|
原版英文书 第二版1 _ a4 A. U, ^9 o: B
contents:9 j+ @ G8 R+ q( n4 {+ w8 b$ a, d n
Preface to the first edition page viii
- p1 G6 ?& z. _5 w& IPreface to the second edition xi
2 k# @7 t: V2 R1 Introduction 1
! R/ u, l6 e2 x1 ?4 B2 Parabolic equations in one space variable 78 @# w8 [ A3 K
2.1 Introduction 7- k( n& N$ l1 i' f
2.2 A model problem 7* y. o, O( c4 \& X9 w
2.3 Series approximation 9 P+ ]2 N+ H! M+ T8 v( _, u6 S1 x( N
2.4 An explicit scheme for the model problem 104 C' @6 w, O$ x
2.5 Difference notation and truncation error 12
M0 W, n- ^% E$ N2.6 Convergence of the explicit scheme 165 B( W' d1 o9 Y# o- F8 V
2.7 Fourier analysis of the error 196 _( ~% R/ t" M) t) Q1 `
2.8 An implicit method 226 g( z; X) u- f% w
2.9 The Thomas algorithm 24% C( r! _' b' ~9 ^1 I5 e" F
2.10 The weighted average or θ-method 264 n9 |9 j4 H' X5 L2 M2 ?
2.11 A maximum principle and convergence
$ s9 V# v1 o# C+ V8 k% afor μ(1−θ)≤ 1$ G& b9 N# F; T# S
2 33
1 z5 z& ?! v B8 r2.12 A three-time-level scheme 38" c' T# T8 }! W. T
2.13 More general boundary conditions 39
% H# V) i! z3 x9 T( @' i2.14 Heat conservation properties 44& k* n( Q* l9 K. K& X! m5 |
2.15 More general linear problems 462 P* S$ b' d3 h
2.16 Polar co-ordinates 52
' G* G* y- A* w- f2.17 Nonlinear problems 54- D& ?4 v! [' z( f2 w
Bibliographic notes 56
( q$ \( m6 y. o& n @2 dExercises 56
+ @' ~6 j0 s gv- Q7 ?7 \% w* r- k8 ^: I
vi Contents
; D8 Y) I% O; p7 Q4 l( V# b6 h3 2-D and 3-D parabolic equations 62
6 V, Y, ?1 L# m( `+ k/ Q: Q3.1 The explicit method in a rectilinear box 62
1 o( `* G0 i5 u( k1 o$ P3.2 An ADI method in two dimensions 645 e6 o7 v% j; j2 @
3.3 ADI and LOD methods in three dimensions 70- `* Y4 O& r' P- p$ u, C+ M" m
3.4 Curved boundaries 71
) N# m- F) n" m" F, O# |3.5 Application to general parabolic problems 80& |( h+ C& q. S' a3 z
Bibliographic notes 83 o9 ]1 f! ]) Q0 v7 d
Exercises 83
+ L* j" ]" Y: q3 }0 z9 k& P9 K* w4 Hyperbolic equations in one space dimension 867 ~, p* }" l8 C* N
4.1 Characteristics 864 }7 B, B) G9 L, S, C
4.2 The CFL condition 89
+ j/ H* ]9 m4 x( i. S4.3 Error analysis of the upwind scheme 94
) U+ A' ^* i0 T# M: b- F4.4 Fourier analysis of the upwind scheme 97
) w9 V% s: S0 ?1 g4.5 The Lax–Wendroff scheme 1003 v% Y7 |3 ]! ~
4.6 The Lax–Wendroff method for conservation laws 103( w M! p: I" H E: s; M
4.7 Finite volume schemes 110
8 D# `; [0 \. _7 |4.8 The box scheme 116
& n+ w4 K' X$ v! z2 r8 \" h! N' |4.9 The leap-frog scheme 123
3 ~1 D! M; |: f0 c; _0 u4.10 Hamiltonian systems and symplectic
r: [% k& j0 o9 w, J l5 T2 f- hintegration schemes 1281 s) P% I6 M" K: ~+ R% l: ^- a9 u
4.11 Comparison of phase and amplitude errors 135! y7 Z0 s2 N7 P% d; Y7 y; B0 v6 H
4.12 Boundary conditions and conservation properties 139
8 F4 b7 ~: J# @( j: d% b, p4.13 Extensions to more space dimensions 143/ x* M" \* D! ]* i4 d
Bibliographic notes 1460 G$ V! r; l5 J6 c. E& o+ Q
Exercises 146
) b6 |( e5 e4 I5 Consistency, convergence and stability 151( e; E1 i5 W3 j$ U* d* ^1 O
5.1 Definition of the problems considered 151. w2 Q6 N" Q2 h- H
5.2 The finite difference mesh and norms 152
6 ]2 f5 ~" {. `5.3 Finite difference approximations 154
9 c0 Z9 ^6 \' l5.4 Consistency, order of accuracy and convergence 156
$ Q0 ?5 d. W: f% f7 v0 w/ Z" \- y5.5 Stability and the Lax Equivalence Theorem 157* T0 T/ i0 T$ C/ z9 x9 K
5.6 Calculating stability conditions 160
1 n- s Z3 b% S2 P% i* Z5.7 Practical (strict or strong) stability 166; e r& Z! M' P
5.8 Modified equation analysis 169
$ _" H6 a: y9 D7 Z+ [% O5.9 Conservation laws and the energy method of analysis 177
, J; c9 [+ ^8 s0 D5.10 Summary of the theory 186
* u$ W; }: {3 `8 P: M+ v5 ABibliographic notes 189
1 f$ R* o& }: [) t+ w8 }6 u* n7 g! \Exercises 190
) b2 n# _' j: S BContents vii
) {' \- g. V7 K6 Linear second order elliptic equations in
, F( u1 S) e* U& n( {two dimensions 194
0 `- j+ E* G( ?1 H6.1 A model problem 1948 `: c& M' x% B1 S: C3 S
6.2 Error analysis of the model problem 195) f2 r' t; a& D5 k! q
6.3 The general diffusion equation 197! _' X" d+ y3 X
6.4 Boundary conditions on a curved boundary 199! }/ L! I* r9 L9 ?3 n j
6.5 Error analysis using a maximum principle 203- }/ `( X6 `, B- O2 s# D2 a
6.6 Asymptotic error estimates 213
+ A `" ^3 J3 G0 A6.7 Variational formulation and the finite3 p: g. T3 j" Y$ F$ p' V
element method 218, }& }1 a$ |3 ~: V" H6 Y( t
6.8 Convection–diffusion problems 224
9 W( ^/ p2 v6 {* [4 w) P- [6.9 An example 228# }6 Q4 ^7 G: r# O x
Bibliographic notes 231
& k; k; m& _3 d* j4 f" t' ^Exercises 232- S! P$ L7 k4 V/ K6 E4 T( m& q/ d! h
7 Iterative solution of linear algebraic equations 2351 M$ O; X/ u- S; d
7.1 Basic iterative schemes in explicit form 237
* C7 X6 W6 t7 L2 u: e$ k7.2 Matrix form of iteration methods and
& a' t4 \+ r, P/ Utheir convergence 239
' j1 z( O, @- I% f* |5 p0 F5 N& ^7.3 Fourier analysis of convergence 244
: s+ f/ Z, ~- K5 \5 |% q7.4 Application to an example 248 B. ~( \6 A2 G$ k9 |1 x6 n; V; V: g
7.5 Extensions and related iterative methods 250* }9 ^8 T8 I" q
7.6 The multigrid method 252
9 P+ h( E, r* K! W4 |, S- G9 S1 t7 f7.7 The conjugate gradient method 2583 F& r$ K2 V1 W* I6 G8 I2 S( C5 u% C
7.8 A numerical example: comparisons 2614 P j0 I, m b4 x
Bibliographic notes 263
: k/ S" u$ S" ~$ W* U cExercises 2634 w4 H9 z- H1 ?; n# _) Z
References 267
& v( A! |/ k. ~Index 273 8 V9 q" T* c, b, j0 f. @" ^; V0 r% b
% b- {6 I! E2 ]% w" W+ X2 e6 @+ X0 l4 W% i# L
, [' i7 U: I( x+ {% L9 q- b
8 Q! X; b" ~8 | |