原版英文书 第二版" [) D- T% Q" r4 ^# _4 Z
contents:- j( I3 W9 N! N1 G$ f) H" P
Preface to the first edition page viii
# P; }5 q( H% WPreface to the second edition xi# s- _! M* Y) T h/ E) C* S
1 Introduction 1: J8 G4 X2 `, o3 z
2 Parabolic equations in one space variable 79 `+ X6 {( M5 l- E/ J+ X
2.1 Introduction 76 z T% t2 H) C) k3 ?' b
2.2 A model problem 70 C i$ B* S# y" w7 `
2.3 Series approximation 9
& j) y5 c. f3 m! A0 v/ ]9 ^8 A2.4 An explicit scheme for the model problem 10: w9 v w% e3 G
2.5 Difference notation and truncation error 12" C7 D1 H/ J! U. N I
2.6 Convergence of the explicit scheme 16! p; l0 H4 t8 Z5 s$ B y7 V$ ~
2.7 Fourier analysis of the error 19( R: B* y9 ]: ]& o# i }) M8 a
2.8 An implicit method 227 }. g. Q9 h' p, C) L
2.9 The Thomas algorithm 243 e9 o; Z# b' W% m K2 a
2.10 The weighted average or θ-method 26
) c: ~+ U! N% M+ p/ I2 S2.11 A maximum principle and convergence
. o1 R* T/ R" ]$ |- ofor μ(1−θ)≤ 14 l4 P! L# t2 X( z) s3 i
2 33! P$ q( W2 T, m& i& c5 F' ~
2.12 A three-time-level scheme 388 q+ t+ v6 s5 M! @4 q1 h" x4 _
2.13 More general boundary conditions 39
8 J+ i0 r8 M z# \4 q9 n$ l2.14 Heat conservation properties 44
$ C2 R$ ]$ r4 `9 P6 d" ~2 C2.15 More general linear problems 46
- _3 ?$ I7 k& v: K9 S3 @( q6 X9 {2.16 Polar co-ordinates 52
; U% n6 Y0 B; J! C. x2.17 Nonlinear problems 54
2 A, K+ P3 T1 z; m2 PBibliographic notes 56
2 B% ~. E: w5 G6 \( t' x NExercises 56
; t4 Z: H& o, s3 N+ t+ fv
. `8 u3 E1 `! w4 a0 Ovi Contents! o+ J1 L; l# Y6 G3 B
3 2-D and 3-D parabolic equations 62
) E) [$ l- u" L: q3 u3.1 The explicit method in a rectilinear box 628 ]7 _0 G. ?( V( t; P; H# L
3.2 An ADI method in two dimensions 64
/ @' `* U; C! m* @6 E0 D0 c3.3 ADI and LOD methods in three dimensions 70& z# N1 E4 M0 {/ g1 z6 i8 z
3.4 Curved boundaries 71. N- a8 F* f" l4 j1 M" _# T2 c
3.5 Application to general parabolic problems 80
" n% P4 K* g f( M8 \Bibliographic notes 83
5 d: f2 ` _2 o E3 aExercises 83) \8 n2 i( U6 k' I! t0 L
4 Hyperbolic equations in one space dimension 86
, P# ~/ c- E% d0 R4.1 Characteristics 86
' j7 W/ T% N1 s q8 B0 ~( s4.2 The CFL condition 89 @) o$ l5 o" Z1 ?2 }( X; H# ]
4.3 Error analysis of the upwind scheme 94
0 F* W+ q+ S* N: R/ T8 w/ [4.4 Fourier analysis of the upwind scheme 97; T, i* H$ M6 g1 f C
4.5 The Lax–Wendroff scheme 100& L; i i! x) d8 H9 |
4.6 The Lax–Wendroff method for conservation laws 1032 g; h0 H7 i+ i3 @& R
4.7 Finite volume schemes 110
( X* f z8 ?1 h2 _' J7 W9 T% H4.8 The box scheme 116
c/ ]7 Q% C* q6 x' Y4.9 The leap-frog scheme 123- O1 @: N9 P# l, {' }/ w
4.10 Hamiltonian systems and symplectic
! `. u: \5 U- M6 A2 Gintegration schemes 128
# z. t' ^& {" i4 u- i4.11 Comparison of phase and amplitude errors 1356 X4 U1 J. A0 r9 l; I8 y
4.12 Boundary conditions and conservation properties 139
* N c$ a7 R7 a+ F4.13 Extensions to more space dimensions 143
4 z7 K$ m2 Y* @2 bBibliographic notes 146( b6 \( U: J- u( }" S
Exercises 1468 U! N w0 Y+ [0 B4 ^! `+ O
5 Consistency, convergence and stability 151
) @. c4 j' W4 W, Y. h Q; y5.1 Definition of the problems considered 151
1 G5 w0 ]3 b5 j# X5.2 The finite difference mesh and norms 1529 G: z* i/ Q1 M$ {/ Y; d2 r
5.3 Finite difference approximations 154
' z: ^1 u5 J: `6 u; P$ y5.4 Consistency, order of accuracy and convergence 156; e! k1 s2 b: [9 v/ u) g
5.5 Stability and the Lax Equivalence Theorem 157
0 E7 } A. w$ S6 _# y6 C5.6 Calculating stability conditions 1600 }; r+ I0 q3 R* B. M
5.7 Practical (strict or strong) stability 166+ q- l+ d- G6 p& S
5.8 Modified equation analysis 1699 E" M7 n( h8 r4 l: o- y' m7 C
5.9 Conservation laws and the energy method of analysis 177- [* _6 t; s* p" G5 l4 e
5.10 Summary of the theory 186" |8 x5 n. ]; I; ]1 w$ j$ q' l
Bibliographic notes 189
% j; c& {; g5 x; o1 {3 R \3 D; sExercises 190
& n% k: q8 h. N! f8 T# uContents vii
) n: y2 W/ A0 L* q7 O; t6 Linear second order elliptic equations in
) l% I; h8 \8 ^6 Q0 p8 q9 Xtwo dimensions 194
9 p: h1 }/ B& a$ ?. F, D! e6.1 A model problem 194$ ~6 h4 m0 M! R6 U
6.2 Error analysis of the model problem 195
# p/ I1 s9 l+ p) w$ z7 [3 Z) _6.3 The general diffusion equation 197
5 X+ Q* k& S# Y- ^3 Z6 @6.4 Boundary conditions on a curved boundary 199
/ V7 v/ D8 P( l: A, ]! r% C6.5 Error analysis using a maximum principle 203$ v, m; r% }# D$ d" `8 b; G
6.6 Asymptotic error estimates 2134 ?1 Z. n. X/ }( c, ^
6.7 Variational formulation and the finite
* g& ?, T0 H4 e9 Z4 kelement method 218
2 \9 `% [. c4 D& ]: m& J0 E6 c6.8 Convection–diffusion problems 2246 _: J' R+ _( p& b
6.9 An example 228# X' \ Q0 c2 B* y! `7 }5 C! F
Bibliographic notes 231
; f# O* g. [" n* ^8 bExercises 232
; b7 P6 d i7 _" A8 {% l& I2 o0 w$ O7 Iterative solution of linear algebraic equations 235
3 {# i" R- j6 b0 O2 Z8 A: a7.1 Basic iterative schemes in explicit form 237
) x% U+ \+ }& n4 O: y7.2 Matrix form of iteration methods and( l$ }" Q0 U% U. W5 |# g2 S
their convergence 239
0 u% p* r% Z( p, B: Y7.3 Fourier analysis of convergence 244
, W& c! o+ @( d5 J* b9 K7.4 Application to an example 248
, H7 _( E! Q/ z- E% l% ]( }7.5 Extensions and related iterative methods 250
{6 t1 v( d K7 L0 c* q7.6 The multigrid method 252+ H: T0 q- `. c
7.7 The conjugate gradient method 2585 v2 g9 G+ @1 c/ m% o
7.8 A numerical example: comparisons 2619 z# n9 b8 |4 U/ m" ] F
Bibliographic notes 2637 P9 U5 [" X5 y% n0 s
Exercises 263
( m4 e+ k8 c) K: t2 [References 267
, }# E% p) C' ]0 E- T) WIndex 273 ! |. I7 f. }( U$ W! i9 q' I2 e. r; N9 V
4 _" U( V1 W' K/ i. n1 K
3 ^ z& H2 Z- x* \9 u; i
( c' k" L0 [5 ]0 E# y2 n: i. I% r1 L: f# E$ G" y+ D1 W
|