|
原版英文书 第二版
8 S$ N( G( G7 {contents:" e" F1 r; N9 n4 f
Preface to the first edition page viii0 w6 w5 Y5 s; V2 X ^
Preface to the second edition xi( K6 B, {3 C+ B5 r+ A
1 Introduction 1; g- q8 t1 N. S; @
2 Parabolic equations in one space variable 7
5 u. k' E4 M6 F! e" v# A- b P; w2.1 Introduction 7: k' R) n; t# X1 \- c
2.2 A model problem 7
6 M. N' o8 s A2 P2.3 Series approximation 9
q7 s7 d7 h# [, ]. L) q5 M m% c2.4 An explicit scheme for the model problem 10
+ ~7 D, Q: H* e! {2.5 Difference notation and truncation error 12
; p: y' Q# W3 u2.6 Convergence of the explicit scheme 16$ @; e& T! I8 g- }
2.7 Fourier analysis of the error 19
+ U+ L- B% O( [ z, g+ J- w3 b2.8 An implicit method 22+ P) _! d2 L% D }
2.9 The Thomas algorithm 24+ k/ X7 T" ?: b+ `
2.10 The weighted average or θ-method 26
0 T6 n* i' v7 ?. v2.11 A maximum principle and convergence
5 w" b* z/ a! f5 K* wfor μ(1−θ)≤ 1* \8 {+ [: J H! W6 f8 w) o' r. _$ w
2 33" J$ a: g7 v' I9 R- p+ q R4 k
2.12 A three-time-level scheme 38
- u: I# Z8 a6 X3 W2.13 More general boundary conditions 39, r5 n: o; @) K% a* W
2.14 Heat conservation properties 44
2 D- Z- Z+ T5 j, d2.15 More general linear problems 460 ~. l7 a/ e7 ? W t1 q) ?: A
2.16 Polar co-ordinates 52
$ i0 j2 V4 r- T5 D3 G! O' w) i A2.17 Nonlinear problems 54
# {2 [7 K! ?# H; n: A# LBibliographic notes 56
: i* { Q' P2 M: l9 f% y [Exercises 567 z- U1 ?3 x g8 D
v, e; Q4 C5 W3 E, A9 g1 U
vi Contents' R/ b1 D# Q# K
3 2-D and 3-D parabolic equations 629 p0 I0 b3 y6 S7 N* {
3.1 The explicit method in a rectilinear box 62
/ q; f$ J6 B7 |5 J8 ?$ Y' E# G3.2 An ADI method in two dimensions 64
2 v/ T8 c6 J8 Y# a& G3.3 ADI and LOD methods in three dimensions 70
5 }+ T* M/ G1 \$ K3.4 Curved boundaries 71
: y" H' n& k; ?- n3.5 Application to general parabolic problems 80
# i# O3 s2 f( Q* n$ TBibliographic notes 83
- o- t% t# w: J& m) TExercises 83. t2 Z6 _! I& H! ?* A. `. B
4 Hyperbolic equations in one space dimension 86$ p5 Q R$ |9 y# A0 Y3 w& u
4.1 Characteristics 86
- I' |' O* @7 X7 C3 ? q$ Q4.2 The CFL condition 89
( h/ W& c9 n, K7 c4.3 Error analysis of the upwind scheme 94
9 j1 y3 ?" d% o% `3 z3 ~! O4.4 Fourier analysis of the upwind scheme 97
' L! C/ N* W7 c1 f+ X, \8 i4.5 The Lax–Wendroff scheme 100
4 M; w8 M0 K" }' G8 c4 s1 G6 i4.6 The Lax–Wendroff method for conservation laws 1037 L P1 [, ]3 c! G1 u) n" X+ `, r
4.7 Finite volume schemes 110
' z9 E5 @) ^6 W l* O9 B n( S ~% i4.8 The box scheme 1160 _1 h# W0 N5 v- e( y- Q4 O
4.9 The leap-frog scheme 123
$ A$ ^* i1 f0 g4 O8 a4.10 Hamiltonian systems and symplectic
; A% n! V2 o( f1 R# B% wintegration schemes 128
% L2 s4 T) l( A0 C, N4.11 Comparison of phase and amplitude errors 135* _( r' x9 H! g9 a) }7 h- t& J
4.12 Boundary conditions and conservation properties 139
# C8 j2 ?+ T* j- y: N. ?- D4.13 Extensions to more space dimensions 143) s5 |7 N! w' s' B2 y% d: i
Bibliographic notes 146
& S9 s, t* E* B ?Exercises 1461 V2 u: f! d3 H4 {2 k+ _8 y c" X
5 Consistency, convergence and stability 151; R* ~: K8 d5 ]- K
5.1 Definition of the problems considered 151; z3 ~: T# V8 q
5.2 The finite difference mesh and norms 152
4 Y) s- {" U) x( j9 T5.3 Finite difference approximations 1541 \! w# Y6 [5 V H& S
5.4 Consistency, order of accuracy and convergence 156
- t1 D }4 s( k5.5 Stability and the Lax Equivalence Theorem 157
, n& O- m" V- Z5.6 Calculating stability conditions 1602 c6 j1 l$ I p* W7 ?
5.7 Practical (strict or strong) stability 166
4 G/ k q3 D$ W6 R( n0 B$ o: d- W5.8 Modified equation analysis 169
# V& `" J) q3 p7 `, \* o1 d5.9 Conservation laws and the energy method of analysis 1770 s& K/ n9 g& i- \! o
5.10 Summary of the theory 1861 j: A* @+ h/ f! `, T
Bibliographic notes 189
( }' [9 G7 z5 L7 b# I) ]$ X8 [Exercises 190
# G' W, X9 ]; v4 d& x CContents vii) s2 N) ~: w% \: S6 d
6 Linear second order elliptic equations in. q% A" F; q- k- z
two dimensions 1948 M m2 H& M4 ?. W0 S* |
6.1 A model problem 1942 s n! M* S7 q$ s3 X8 a0 _! i5 q
6.2 Error analysis of the model problem 195
0 X7 {1 L- G l9 o7 w$ w/ o6.3 The general diffusion equation 197$ i$ o4 k5 I! j: P
6.4 Boundary conditions on a curved boundary 199
6 G* D4 F% r- g$ S6.5 Error analysis using a maximum principle 203
0 D; d7 z9 H! D5 J* |6.6 Asymptotic error estimates 213- G0 b' {! h+ F( J8 O% X5 }/ o0 f
6.7 Variational formulation and the finite. o& P& h' Q5 N0 [
element method 218
4 Y5 i4 S) d. i9 l H6.8 Convection–diffusion problems 224) M8 y8 L8 k' X$ G$ h
6.9 An example 2281 x( F" \) d9 N: _
Bibliographic notes 231% U5 y, e( @ ~( u2 s# U4 q+ U
Exercises 232# c; t; m) o1 {# ~; R
7 Iterative solution of linear algebraic equations 235' f: f }, Y' V0 I5 c% P$ n; [
7.1 Basic iterative schemes in explicit form 237
" v9 n) q$ f& Q+ O. d! J7.2 Matrix form of iteration methods and% Y4 [4 R& j- F. h# ?6 R& b
their convergence 239$ v& R6 D, t) W. L9 H
7.3 Fourier analysis of convergence 244$ ^ N& O1 e; j; B
7.4 Application to an example 248
- H0 O4 ?" N6 h0 ~+ o) N; t8 k5 i7.5 Extensions and related iterative methods 2504 g1 X8 `" ] Z) Z) r2 g+ H
7.6 The multigrid method 252
3 b. x! _7 c0 l1 i! J9 l* q7.7 The conjugate gradient method 258/ g/ h8 l+ u6 {- @) Q. M+ H
7.8 A numerical example: comparisons 261
- U5 y: I% j# O0 V& B# C' i3 z$ ~Bibliographic notes 263
6 [* {/ g! a6 w3 A; l1 ?/ [, QExercises 263
0 D' N* h+ ^( D, z9 SReferences 267
; Y& ]7 p5 D UIndex 273
5 I6 d4 ?* x! ~4 A$ j {( {3 X$ F/ M4 [/ y0 Z3 Y% n
V8 \3 I3 n5 `* x# a" d6 ~5 V1 ^9 L. D* e
$ e$ [$ z- Z4 c' n5 E
|