- 在线时间
- 1084 小时
- 最后登录
- 2015-9-10
- 注册时间
- 2014-4-18
- 听众数
- 162
- 收听数
- 1
- 能力
- 10 分
- 体力
- 43976 点
- 威望
- 6 点
- 阅读权限
- 255
- 积分
- 15250
- 相册
- 0
- 日志
- 0
- 记录
- 1
- 帖子
- 3471
- 主题
- 2620
- 精华
- 1
- 分享
- 0
- 好友
- 513
升级   0% TA的每日心情 | 开心 2015-3-12 15:35 |
|---|
签到天数: 207 天 [LV.7]常住居民III
 群组: 第六届国赛赛前冲刺培 群组: 国赛讨论 群组: 2014美赛讨论 群组: 2014研究生数学建模竞 群组: 数学中国试看培训视频 |
% [ u: x o6 k. e7 ^Chapter 52
/ U" r: \0 N% V# YTheMCMCProcedure, A- ~/ T- v. U* b) A& z' [
Contents+ ~, X) s% N) V2 N
Overview:MCMCProcedure ............................ 3478* _3 a- o7 V9 @) B- \7 {- h
PROCMCMCComparedwithOtherSASProcedures ............3479
+ Y& B f# r) s! Q4 X. }GettingStarted:MCMCProcedure .......................... 34798 c! w) n# d4 o- V) n& ?, D m' o C
SimpleLinearRegression ...........................3480
2 e# A4 M8 j" i8 H9 D0 G# b# LTheBehrens-FisherProblem ..........................3488$ d$ k2 B$ s. L1 r; c* m9 @0 M o
Mixed-EffectsModel .............................3492 @0 h; D7 M* C1 Y
Syntax:MCMCProcedure .............................. 34954 t' i! q( r1 g9 O8 e+ x9 H4 D
PROCMCMCStatement ...........................34963 U; _3 @! w* x) g& Q
ARRAYStatement ...............................3508
! l( ^& q- q; e6 QBEGINCNST/ENDCNSTStatement .....................3509- b( \# f+ b* A+ y( f- K A- S' g, j
BEGINNODATA/ENDNODATAStatements .................3511
, W7 f/ y' h' J+ W. v/ U' S2 _BYStatement .................................3511/ X1 E- a4 H% o5 ~: J5 y
MODELStatement ...............................3512
: }/ I. E7 X+ L! ?& H ^PARMSStatement ...............................35154 i/ G% [8 Y. j0 F$ {8 J c: _
PRIOR/HYPERPRIORStatement .......................35166 Z+ ^0 V- o/ h# {
ProgrammingStatements ...........................3516) k& e' t. m& K; U
UDSStatement .................................3518
# N) L. @& ~5 D$ {+ p. wDetails:MCMCProcedure .............................. 3522
+ n( |: o. r' m% R- tHowPROCMCMCWorks ..........................3522
, f5 ? c8 H2 [BlockingofParameters ............................3523
* b- u2 y/ A" a# m: aSamplers ....................................3524# A7 f7 {' W) J/ d
TuningtheProposalDistribution .......................3525
, G; j# C& a! g8 x' K* ^InitialValuesoftheMarkovChains ......................3528
/ _/ q8 z2 c7 xAssignmentsofParameters ..........................3528
# j! W' M/ b, g! w# pStandardDistributions .............................3530
* l4 \. s& _: \# [SpecifyingaNewDistribution .........................3541
2 }& }6 c1 x$ V$ N% W0 t/ L1 ?# RUsingDensityFunctionsintheProgrammingStatements ...........3542
9 Y, N% }2 `! n7 d- t) K' m' jTruncationandCensoring ...........................3544) F5 y4 A D7 C( e6 [2 k% }
MultivariateDensityFunctions ........................3546' b9 U0 b6 G! K3 f
SomeUsefulSASFunctions ..........................3549
" V% I- j: k; b+ T# `7 UMatrixFunctionsinPROCMCMC ......................3551; p* c E* y# `6 D
ModelingJointLikelihood ...........................3556$ C4 M. y X1 {! P" [; {! Q
RegeneratingDiagnosticsPlots ........................3557
3 ]9 B6 l1 @' X; VPosteriorPredictiveDistribution ........................3560
3 }" X* a7 c" P* X- a: BHandlingofMissingData ...........................3565
; r) m# T- p ]0 `4 h+ u: p$ b0 m3 KFloatingPointErrorsandOverflows ......................35650 V$ j8 z; m) D! D- o8 K2 z' i5 b
HandlingErrorMessages ...........................3568
+ U! X1 ]* D( ^! a7 dComputationalResources ...........................3570 Y2 y5 n0 [' t3 E6 N$ X" r! c
DisplayedOutput ................................35714 B( x0 `4 V3 j+ Z
ODSTableNames ...............................3575% b) t- X$ w1 N- F% ^) E+ F' U( o& e' Q
ODSGraphics .................................3577 [& n/ _, [# w8 k5 C
Examples:MCMCProcedure ............................ 3578' F, w! t, w; p
Example52.1:SimulatingSamplesFromaKnownDensity .........35782 q4 U7 n7 V% V& b5 Q- ?. u
Example52.2:Box-CoxTransformation ...................3583
8 d) M2 ^) b- Z# W; m( ~) wExample52.3:GeneralizedLinearModels ..................3592
3 C' G2 ]! H Z( E4 ]. L& RExample52.4:NonlinearPoissonRegressionModels ............3605
) |. s1 X' i; lExample52.5:Random-EffectsModels ...................36147 F, }' o/ l3 n( G( w* e. d5 u
Example52.6:ChangePointModels .....................3630# h; i I0 v4 Q7 k
Example52.7:ExponentialandWeibullSurvivalAnalysis ..........3634
( ~# N5 O8 k; s; r" }5 m! C: w" CExample52.8:CoxModels ..........................3647
& r7 }" Q K: e+ Q( VExample52.9:NormalRegressionwithIntervalCensoring .........3664
8 z. E6 r9 [) h5 I H* t( ^( ^8 ?. A$ uExample52.10:ConstrainedAnalysis ....................3666
7 M2 Y9 D5 N. ^ ^4 bExample52.11:ImplementaNewSamplingAlgorithm ...........3672
/ k5 r" c) h* H8 y7 T5 K7 C- n$ YExample52.12:UsingaTransformationtoImproveMixing .........36834 b0 D: L" X4 D( T' [0 h- P& c, m
Example52.13:Gelman-RubinDiagnostics .................3693
( `' v6 P" b! |. d8 P- `# WReferences ...................................... 3700
4 X* [1 A# L0 z. {) i; Y6 @ | 9 Z7 G9 T% m; h# g: h
|
zan
|