- 在线时间
- 1084 小时
- 最后登录
- 2015-9-10
- 注册时间
- 2014-4-18
- 听众数
- 162
- 收听数
- 1
- 能力
- 10 分
- 体力
- 43976 点
- 威望
- 6 点
- 阅读权限
- 255
- 积分
- 15250
- 相册
- 0
- 日志
- 0
- 记录
- 1
- 帖子
- 3471
- 主题
- 2620
- 精华
- 1
- 分享
- 0
- 好友
- 513
升级   0% TA的每日心情 | 开心 2015-3-12 15:35 |
---|
签到天数: 207 天 [LV.7]常住居民III
 群组: 第六届国赛赛前冲刺培 群组: 国赛讨论 群组: 2014美赛讨论 群组: 2014研究生数学建模竞 群组: 数学中国试看培训视频 |
( N" O1 H9 W$ t$ @0 u6 I! d
Chapter 52# o1 ~8 d4 z. F4 p8 s' K
TheMCMCProcedure; [( O& B$ c: @
Contents
9 R0 a( Q1 z0 @# ]' j gOverview:MCMCProcedure ............................ 3478
% J- J& d: C. A3 s5 f5 WPROCMCMCComparedwithOtherSASProcedures ............3479
( S/ g- I, g' T( @" M, NGettingStarted:MCMCProcedure .......................... 3479
8 B5 W- s* A" n+ L9 D" HSimpleLinearRegression ...........................3480$ Z j1 ]/ x2 Z$ B, h2 p$ U
TheBehrens-FisherProblem ..........................3488
6 E" S/ w2 E# @: _) {Mixed-EffectsModel .............................3492
; X5 u4 K% O% c* h, [# w# hSyntax:MCMCProcedure .............................. 3495
J0 k, G$ E! `- \8 \3 @- UPROCMCMCStatement ...........................3496) y/ @9 `) M6 A9 s4 f. k$ _
ARRAYStatement ...............................3508: h5 J8 K, I! |# U
BEGINCNST/ENDCNSTStatement .....................3509. V5 \+ Q, r% C
BEGINNODATA/ENDNODATAStatements .................3511: I$ G+ } i* b3 P. ?! p* X Y
BYStatement .................................3511
+ H" ~* i% p* J5 M, T4 k. H3 |MODELStatement ...............................3512
7 I& d( W5 \9 l0 IPARMSStatement ...............................3515
3 G8 K8 A' f! x5 ^PRIOR/HYPERPRIORStatement .......................35164 P- s7 H$ P4 _; R( q
ProgrammingStatements ...........................3516
4 r, w p( R; E+ d1 IUDSStatement .................................35181 ^0 n4 ?) J5 T# \# Q) Y! {
Details:MCMCProcedure .............................. 3522
' a1 a6 u- H; e# {: ]% OHowPROCMCMCWorks ..........................35227 r% `8 v& L: C' z
BlockingofParameters ............................3523; j" |4 u& D- h" ?) H3 m. R6 o
Samplers ....................................3524
7 ]9 {* ]2 I6 W0 cTuningtheProposalDistribution .......................3525& H- X- p* p, P3 E" _3 z
InitialValuesoftheMarkovChains ......................3528
% {3 X8 y% Y% g, \( N4 k% ]AssignmentsofParameters ..........................3528
. s; q6 C3 e4 K) I# o2 J" z; }) NStandardDistributions .............................3530. d$ N' Y* H1 t3 h4 x3 R- t+ q
SpecifyingaNewDistribution .........................3541/ ?0 y# w* f, v7 C5 `% z4 n9 X
UsingDensityFunctionsintheProgrammingStatements ...........3542
0 F+ D8 t+ ~6 I7 X& S( l; sTruncationandCensoring ...........................3544
, ~ B; }) ^) O8 c* Y* TMultivariateDensityFunctions ........................3546
- ]+ x) p, E _/ ? C& [# Q' {$ q9 oSomeUsefulSASFunctions ..........................3549
: V2 f& ~! q7 Y2 I% @MatrixFunctionsinPROCMCMC ......................3551. F% G/ c; X9 y6 A) A' _) F( ~
ModelingJointLikelihood ...........................35565 T9 q7 t( i1 }& k& p
RegeneratingDiagnosticsPlots ........................3557+ y; `! {# m B
PosteriorPredictiveDistribution ........................35603 R: [! {! c8 s- o6 Y
HandlingofMissingData ...........................3565. B$ G- X( X. A9 ?0 k! f
FloatingPointErrorsandOverflows ......................3565
# U- i9 z) s* [) |# PHandlingErrorMessages ...........................3568
" H+ W% r0 V9 ~) E9 o) zComputationalResources ...........................35707 Q% g. X7 a; |+ F( O
DisplayedOutput ................................35712 o0 I5 c! }" r5 P
ODSTableNames ...............................3575: ]1 N# [) r9 m: _& p
ODSGraphics .................................3577
8 `$ L- L, S! \/ [. W/ mExamples:MCMCProcedure ............................ 3578
' E- I9 o) z2 F% [& NExample52.1:SimulatingSamplesFromaKnownDensity .........3578" M; G0 j2 `# q9 @& e) x2 Z# q
Example52.2:Box-CoxTransformation ...................35839 u; }0 c4 m2 A. u
Example52.3:GeneralizedLinearModels ..................3592
/ x5 ^% n' |: ~4 p: h' YExample52.4:NonlinearPoissonRegressionModels ............3605, l: u# s0 { v
Example52.5:Random-EffectsModels ...................3614
' S4 s0 X" k( C7 b6 p) Y% C3 aExample52.6:ChangePointModels .....................3630
2 Y, Q) v6 T. x0 s* dExample52.7:ExponentialandWeibullSurvivalAnalysis ..........3634
9 S0 _% {+ h6 }, W' kExample52.8:CoxModels ..........................36474 j4 E6 b! i/ \- K, r/ q1 S
Example52.9:NormalRegressionwithIntervalCensoring .........36642 R7 B5 c% L9 m& ? M4 |3 y
Example52.10:ConstrainedAnalysis ....................3666
3 v1 t J3 b' H* ?5 jExample52.11:ImplementaNewSamplingAlgorithm ...........3672
* `7 A! Z2 _/ v0 O7 j% w' dExample52.12:UsingaTransformationtoImproveMixing .........3683
4 B6 S" C) V9 W, nExample52.13:Gelman-RubinDiagnostics .................36939 Q- A& L( _# [4 E2 d# l
References ...................................... 3700
( V/ f( l) e5 z& z# t% {8 _ |
& }/ M9 ~! H+ l& a0 N% q8 P3 } |
zan
|