- 在线时间
- 21 小时
- 最后登录
- 2015-9-11
- 注册时间
- 2014-6-28
- 听众数
- 13
- 收听数
- 0
- 能力
- 0 分
- 体力
- 611 点
- 威望
- 0 点
- 阅读权限
- 30
- 积分
- 224
- 相册
- 0
- 日志
- 1
- 记录
- 0
- 帖子
- 85
- 主题
- 16
- 精华
- 0
- 分享
- 0
- 好友
- 10
升级   62% TA的每日心情 | 开心 2015-1-3 20:49 |
---|
签到天数: 54 天 [LV.5]常住居民I
 群组: 国赛讨论 |
[p=272, null, left]模拟退火算法- K+ k1 u7 W7 @/ f
' H6 d+ m8 B" @9 ~1 a. T" ~) L
- q K/ V8 t+ ?( u' ]& g[p=197, null, left]模拟退火算法来源于固体退火原理,[p=197, null, left]将固体加温至充[p=197, null, left]分高,再让其徐徐冷却,加温时,固体内部粒子随温升变[p=197, null, left]为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每[p=197, null, left]个温度都达到平衡态,最后在常温时达到基态,内能减为[p=197, null, left]最小。根据[p=197, null, left][size=197px]Metropolis[p=197, null, left]准则,粒子在温度[p=197, null, left][size=197px]T[p=197, null, left]时趋于平衡[p=197, null, left]的概率为[p=197, null, left][size=197px]e-[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]E/(kT)[p=197, null, left],其中[p=197, null, left][size=197px]E[p=197, null, left]为温度[p=197, null, left][size=197px]T[p=197, null, left]时的内能,[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]E[p=197, null, left]为[p=197, null, left]其改变量,[p=197, null, left][size=197px]k[p=197, null, left]为[p=197, null, left][size=197px]Boltzmann[p=197, null, left]常数。用固体退火模拟组合优[p=197, null, left]化问题,将内能[p=197, null, left][size=197px]E[p=197, null, left]模拟为目标函数值[p=197, null, left][size=197px]f[p=197, null, left],温度[p=197, null, left][size=197px]T[p=197, null, left]演化成控[p=197, null, left]制参数[p=197, null, left][size=197px]t[p=197, null, left],即得到解组合优化问题的模拟退火算法:由初[p=197, null, left]始解[p=197, null, left][size=197px]i[p=197, null, left]和控制参数初值[p=197, null, left][size=197px]t[p=197, null, left]开始,[p=197, null, left]对当前解重复[p=197, null, left][size=197px]“[p=197, null, left]产生新解[p=197, null, left][size=197px]→[p=197, null, left]计算目标函数差[p=197, null, left][size=197px]→[p=197, null, left]接受或舍弃[p=197, null, left][size=197px]”[p=197, null, left]的迭代,并逐步衰减[p=197, null, left][size=197px]t[p=197, null, left]值,[p=197, null, left]算法终止时的当前解即为所得近似最优解,[p=197, null, left]这是基于蒙特[p=197, null, left]卡罗迭代求解法的一种启发式随机搜索过程。[p=197, null, left]退火过程由[p=197, null, left]冷却进度表[p=197, null, left][size=197px](Cooling Schedule)[p=197, null, left]控制,包括控制参数的初[p=197, null, left]值[p=197, null, left][size=197px]t[p=197, null, left]及其衰减因子[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left]、每个[p=197, null, left][size=197px]t[p=197, null, left]值时的迭代次数[p=197, null, left][size=197px]L[p=197, null, left]和停止条[p=197, null, left]件[p=197, null, left][size=197px]S[p=197, null, left]。3 W8 `+ s# e' N# r$ |
8 N2 R3 T, \, F" o* n
! k1 W7 ?9 p6 I( B* c% s# h[p=197, null, left]模拟退火算法可以分解为解空间、[p=197, null, left]目标函数和初始解[p=197, null, left]三部分。+ q+ c% j0 ~3 u8 b9 `3 i, t
4 L2 l' X4 B2 E0 N
5 q& `: p! U% i: W- W. b[p=197, null, left]模拟退火的基本思想[p=197, null, left][size=197px]: 0 \$ z8 S8 x# l4 D. ~2 D& o
4 `# Y- h4 `" P4 O, c3 _' D[p=197, null, left][size=197px](1) [p=197, null, left]初始化:初始温度[p=197, null, left][size=197px]T([p=197, null, left]充分大[p=197, null, left][size=197px])[p=197, null, left],初始解状态[p=197, null, left][size=197px]S([p=197, null, left]是[p=197, null, left]算法迭代的起点[p=197, null, left][size=197px])[p=197, null, left],
+ H+ t, l4 F& r8 W7 [[p=197, null, left]每个[p=197, null, left][size=197px]T[p=197, null, left]值的迭代次数[p=197, null, left][size=197px]L
- R# |/ L' H7 p- r: L" a
B5 G' @. m, F( E' e, V- V
2 {6 H" O: d5 D1 U, L- P! Y; D& k( u
' |4 v0 J0 J8 ]5 x+ C2 r0 d
% x! V4 j7 M1 h8 y$ R$ i2 Y
$ o, T% o8 g) A& [, B! S; I! B7 ]0 E1 Z2 Q2 Q) I
2014全国一级建造师资格考试备考资料真题集锦建筑工程经济 建筑工程项目管理 建筑工程法规 专业工程管理与实务: I4 e: W1 i* \( B, x
" i9 j6 p$ @! X7 M6 @, d7 f/ W
0 T( y' [ Z3 u1 a: r: ?/ [4 h4 w
" S5 t0 R( K) K& H. m; a" v8 @2 R# B9 Y8 s0 ~7 E- @
# B& X- [! H3 ]+ E$ h
+ R9 K2 b: f% v3 l6 }+ S
( D. R) ? Z/ _& i% x[p=197, null, left][size=197px](2) [p=197, null, left][size=197px]对[p=197, null, left][size=197px]k=1[p=197, null, left][size=197px],[p=197, null, left][size=197px]……[p=197, null, left][size=197px],[p=197, null, left][size=197px]L[p=197, null, left][size=197px]做第[p=197, null, left][size=197px](3)[p=197, null, left][size=197px]至第[p=197, null, left][size=197px]6[p=197, null, left][size=197px]步:
0 n' c8 a9 y" H' u" H6 u" q; M, ?: ~
8 V4 G5 B# V& t _ F& ^1 C' V[p=197, null, left][size=197px](3) [p=197, null, left][size=197px]产生新解[p=197, null, left][size=197px]S[p=197, null, left][size=197px]′# L) R' g0 m8 g' \% A
& Y- x, D4 R) s# s5 q5 V% F% D
; w0 y+ ]$ o% p, Y[p=197, null, left][size=197px](4) [p=197, null, left][size=197px]计算增量[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]=C(S[p=197, null, left][size=197px]′[p=197, null, left][size=197px])-C(S)[p=197, null, left][size=197px],其中[p=197, null, left][size=197px]C(S)[p=197, null, left][size=197px]为评价函数
& f: Y( x" ~, g e4 y; r2 L7 I; M/ |9 f. a# h! R+ C$ e; v6 r
3 a! m' l$ _1 O; j1 j2 D, h[p=197, null, left][size=197px](5) [p=197, null, left][size=197px]若[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]<0[p=197, null, left][size=197px]则接受[p=197, null, left][size=197px]S[p=197, null, left][size=197px]′[p=197, null, left][size=197px]作为新的当前解,否则以概率[p=210, null, left][size=197px]exp(-[p=210, null, left][size=197px]Δ[p=210, null, left][size=197px]t[p=210, null, left][size=197px]′[p=210, null, left][size=197px]/T)[p=210, null, left][size=197px]接受[p=210, null, left][size=197px]S[p=210, null, left][size=197px]′[p=210, null, left][size=197px]作为新的当前解[p=210, null, left][size=197px].
' ?& w6 I# D' R4 Y3 h' i
7 n) S: k) ~2 \, s( A( w[p=197, null, left][size=197px](6) [p=197, null, left][size=197px]如果满足终止条件则输出当前解作为最优解,结[p=197, null, left][size=197px]束程序。
$ F+ {: O/ O6 m$ l- u* Q" T, F7 D
# x! {* w: r h+ y' R4 o7 e) d
[p=197, null, left][size=197px]终止条件通常取为连续若干个新解都没有被接受时[p=197, null, left][size=197px]终止算法。( m9 d3 D) J5 | }! E# I- Y7 q
3 X+ c% D' Y& w/ E! d4 A4 U0 ]
1 M$ a8 k3 u# l* `/ _ Q
[p=197, null, left][size=197px](7) T[p=197, null, left][size=197px]逐渐减少,且[p=197, null, left][size=197px]T->0[p=197, null, left][size=197px],然后转第[p=197, null, left][size=197px]2[p=197, null, left][size=197px]步。& X: T2 s4 M1 T9 \5 q3 V( s9 W
: x- t o7 M" ^
' K4 a. i4 B! f" Z" G1 B; v+ l[p=197, null, left][size=197px]模拟退火算法新解的产生和接受可分为如下四个步[p=197, null, left][size=197px]骤:) F* {" h9 t/ j6 \( Y( s$ x" K' ^
3 y' b2 h1 s- ]
( G7 y3 ]; }( d4 v8 ?: Z3 N[p=197, null, left][size=197px]第一步是由一个产生函数从当前解产生一个位于解[p=197, null, left][size=197px]空间的新解;为便于后续的计算和接受,减少算法耗时,[p=197, null, left][size=197px]通常选择由当前新解经过简单地变换即可产生新解的方[p=197, null, left][size=197px]法,如对构成新解的全部或部分元素进行置换、互换等,[p=197, null, left][size=197px]注意到产生新解的变换方法决定了当前新解的邻域结构,[p=197, null, left][size=197px]因而对冷却进度表的选取有一定的影响。, V4 V6 H; n0 t9 |
! [ S5 B4 o+ i: d
9 e1 K% K) ^/ ]7 I. n
[p=197, null, left][size=197px]第二步是计算与新解所对应的目标函数差。[p=197, null, left][size=197px]因为目标[p=197, null, left][size=197px]函数差仅由变换部分产生,[p=197, null, left][size=197px]所以目标函数差的计算最好按[p=197, null, left][size=197px]增量计算。事实表明,对大多数应用而言,这是计算目标[p=197, null, left][size=197px]函数差的最快方法。
8 v* @5 M$ w% o7 M( I0 f) [2 ]0 ]5 o* o3 y i+ Z
5 z# m6 ~) {% l8 ~/ L6 j3 t$ P7 z5 Q4 E1 o
+ L% ?+ e8 R" d& ^- k. u9 x6 W8 r a$ w' o: y7 b6 X8 |" c
; X+ T8 s$ v8 q; E+ Q; ]6 u
$ K6 p: R* d5 G$ w, v
/ K' D& M- k1 d% Y- b& t$ U
s2 |5 l# I5 Z9 M h0 k8 Q9 M% W
1 w% i) Y! Q {5 Q$ m8 F3 G( u
. G/ B+ s. [ z
: c. s& C+ ?+ c* F7 N/ D5 _& h' u' B# ~3 z
[p=197, null, left][size=197px]第三步是判断新解是否被接受[p=197, null, left][size=197px],[p=197, null, left][size=197px]判断的依据是一个接[p=197, null, left][size=197px]受准则,最常用的接受准则是[p=197, null, left][size=197px]Metropo1is[p=197, null, left][size=197px]准则[p=197, null, left][size=197px]: [p=197, null, left][size=197px]若[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]<0[p=197, null, left][size=197px]则接受[p=197, null, left][size=197px]S[p=197, null, left][size=197px]′[p=197, null, left][size=197px]作为新的当前解[p=197, null, left][size=197px]S[p=197, null, left][size=197px],[p=197, null, left][size=197px]否则以概率[p=197, null, left][size=197px]exp(-[p=197, null, left][size=197px]Δ[p=197, null, left][size=197px]t[p=197, null, left][size=197px]′[p=197, null, left][size=197px]/T)[p=197, null, left][size=197px]接受[p=210, null, left][size=197px]S[p=210, null, left][size=197px]′[p=210, null, left][size=197px]作为新的当前解[p=210, null, left][size=197px]S[p=210, null, left][size=197px]。
( q f; u7 D3 G7 ^, c( M4 e- o# F3 K4 r4 N F s
: j/ P; y6 L l; K) j[p=197, null, left][size=197px]第四步是当新解被确定接受时,用新解代替当前解,[p=197, null, left][size=197px]这只需将当前解中对应于产生新解时的变换部分予以实[p=197, null, left][size=197px]现,同时修正目标函数值即可。此时,当前解实现了一次[p=197, null, left][size=197px]迭代。可在此基础上开始下一轮试验。而当新解被判定为[p=197, null, left][size=197px]舍弃时,则在原当前解的基础上继续下一轮试验。
, v4 x* \- x% `5 t1 U6 {! U8 X" `6 K0 ~6 Y! Y
. p u* A# Q$ j$ N; A; _ i
[p=197, null, left][size=197px]模拟退火算法与初始值无关,[p=197, null, left][size=197px]算法求得的解与初始解[p=197, null, left][size=197px]状态[p=197, null, left][size=197px]S([p=197, null, left][size=197px]是算法迭代的起点[p=197, null, left][size=197px])[p=197, null, left][size=197px]无关;模拟退火算法具有渐近[p=197, null, left][size=197px]收敛性,[p=197, null, left][size=197px]已在理论上被证明是一种以概率[p=197, null, left][size=197px]l [p=197, null, left][size=197px]收敛于全局最[p=197, null, left][size=197px]优解的全局优化算法;模拟退火算法具有并行性
& |& V! f& n1 l0 c1 P. c2 W" X! n% t2 X( g$ S
/ O0 G/ X& x3 \- f1 K6 c# x
1 n @) D9 g/ P- u) A" O% t; r9 y2 G
2 h$ D2 C) K* o6 B0 c, {
4 p0 S. a, P V* D3 h; K+ }0 s* D+ U8 l+ g- F
4 S& X1 i, T; W- j4 o. y: i& {
|
zan
|