QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3893|回复: 0
打印 上一主题 下一主题

请问FindRoot外面套一个For循环的问题

[复制链接]
字体大小: 正常 放大

4

主题

10

听众

29

积分

升级  25.26%

  • TA的每日心情
    郁闷
    2015-6-6 15:06
  • 签到天数: 5 天

    [LV.2]偶尔看看I

    邮箱绑定达人 社区QQ达人

    跳转到指定楼层
    1#
    发表于 2015-6-2 12:57 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta |邮箱已经成功绑定
    1. lamda = 1.55 10^-6;
      - F1 K( k! q1 \1 Q, s
    2. k0 = 2*Pi/lamda;
      , K, Q8 M' v: }/ o/ `
    3. n1 = 1.4677;(*纤芯折射率*)
      ! d\" e) \+ i. g  g/ n& J  |\" w
    4. n2 = 1.4628;(*包层折射率*)
      2 b9 V2 R9 Z/ Z0 o
    5. n3 = 0.469 + 9.32*I;(*银折射率*)8 f' d\" Y* _( z9 ?1 n
    6. a1 = 4.1 10^-6;(*纤芯半径*)1 z# d! a9 U7 {4 v4 s
    7. a2 = 62.5 10^-6;(*包层半径*). u. k7 f& Q' ~; y2 k( `8 P
    8. d = 40 10^-9;(*金属厚度*)
      , S; y0 _8 F- C; a0 `  q; A
    9. a3 = a2 + d;& X- b6 W( |1 t\" d
    10. mu = Pi*4 10^-7;(*真空磁导率*)
      & d$ g% b0 b- P% q
    11. epsi0 = 8.85 10^-12;(*介电常数*)\" Q/ T# s! S% V& R  y( F

    12. 4 b9 W( y4 d7 a# j# G
    13. n4 = 1.330;
      8 v, ]/ J' ?$ e, n6 O. N! z3 _

    14. , Z: E+ I! x7 e7 i8 g
    15. neffcl = neffclre + neffclim*I;
      $ A, H' J- o% S1 F
    16. # t( _  \# v! i' Q
    17. betacl = k0*neffcl;4 w5 O8 [& I! M; Q
    18. omega = 2*Pi*299792458/lamda;5 l9 m  H9 u3 c+ ^& [: K
    19. $ \$ p- ^; _! s# F: P/ g- p2 v
    20. epsi1 = n1^2*epsi0;0 A1 g  L, h6 z8 f0 h' [
    21. epsi2 = n2^2*epsi0;, v2 B; p0 T' w
    22. epsi3 = n3^2*epsi0;
      ' c3 B; C6 p% P# `
    23. epsi4 = n4^2*epsi0;% E9 K! R6 s* j. B5 i' q
    24. 8 @  Z6 u* H- @$ a+ |0 _
    25. u1 = k0*Sqrt[neffcl^2 - n1^2];
      , X( V' i, _/ O, K; {0 x( y; ~
    26. u2 = k0*Sqrt[neffcl^2 - n2^2];
      ' O( P2 Q5 y2 H+ q; U( ^5 O! a
    27. u3 = k0*Sqrt[neffcl^2 - n3^2];
      2 S/ I# I9 N0 b, ^% d+ g2 _
    28. w4 = k0*Sqrt[neffcl^2 - n4^2];
      5 r9 v, {' O; j0 z

    29. 6 D; s1 Q  M2 E, Y& ]. a4 j, l6 r
    30. Iua111 = BesselI[1, u1*a1];% i  [  f! C% S! C) f0 T) n$ [6 }
    31. Iua121 = BesselI[1, u2*a1];: z/ B, d: \9 V+ {8 X
    32. Iua122 = BesselI[1, u2*a2];; k' G$ n0 O* Z\" q+ v
    33. Iua132 = BesselI[1, u3*a2];! F. G6 l8 }) n: X& H
    34. Iua133 = BesselI[1, u3*a3];
      4 s+ ]$ n# O; }' [1 c2 s+ X1 @
    35. IIua111 = (BesselI[0, u1*a1] + BesselI [2, u1*a1])/2;
      : J' i7 _. h. f4 b
    36. IIua121 = (BesselI [0, u2*a1] + BesselI [2, u2*a1])/2;
      4 g' I. j- f6 Q0 o* m
    37. IIua122 = (BesselI[0, u2*a2] + BesselI[2, u2*a2])/2;
      : a9 m1 U# T* l' B9 B1 X- p  P
    38. IIua132 = (BesselI[0, u3*a2] + BesselI[2, u3*a2])/2;
      2 Q7 X3 `  N- _; b- E% y
    39. IIua133 = (BesselI[0, u3*a3] + BesselI[2, u3*a3])/2;7 ?; ]: R7 y) T$ O: ^: w
    40. ) C! w# U0 {+ e1 ~7 t8 c
    41. Kua121 = BesselK [1, u2*a1];
      ( T- `9 I& S3 j& p: _0 d3 j
    42. Kua122 = BesselK [1, u2*a2];% f: O' {9 O, ^4 D: A8 D8 C# Q
    43. Kua132 = BesselK [1, u3*a2];
      9 @2 ]- w; I4 x0 m( A
    44. Kua133 = BesselK [1, u3*a3];\" v- S6 v0 F: j0 h. _# A
    45. Kwa143 = BesselK [1, w4*a3];
      / O) D+ Z( p- B, @* w5 ?. C
    46. KKua121 = -(BesselK [0, u2*a1] + BesselK [2, u2*a1])/2;
      - r, n  p8 M8 H; b* g6 k
    47. KKua122 = -(BesselK [0, u2*a2] + BesselK [2, u2*a2])/2;
      % a) V) I2 [3 l- K+ ]\" T( F' `
    48. KKua132 = -(BesselK [0, u3*a2] + BesselK [2, u3*a2])/2;' z4 w* Z! h; b\" @  u# B* ^1 }
    49. KKua133 = -(BesselK [0, u3*a3] + BesselK [2, u3*a3])/2;
      ( f9 t\" r  M3 Z6 [# }
    50. KKwa143 = -(BesselK [0, w4*a3] + BesselK [2, w4*a3])/2;
      ; A' d) ^% y' P
    51. 0 I. e6 F3 E4 n0 F. o7 ~. S0 q
    52. H1 = (betacl*Kwa143*( S& y+ s% P' R: T) {+ ^\" m\" X
    53.       Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*7 w2 Q. O6 S8 M9 l3 ]- U
    54.        Kua122 - u3^2/u2^2*Iua132*KKua122) - (betacl*Kwa143*
      7 X+ ^4 p. T% Z. Q5 [4 U
    55.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*
      / d  _+ |, y- w3 M: ~. N* `4 P7 @
    56.        Kua122 - u3^2/u2^2*Kua132*KKua122) + (betacl*Iua132*' p) V2 n9 A* c
    57.       Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
      2 a- M- f8 i8 T- Q' ?  h
    58.        Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*
      ! }, o! b3 J$ o2 U5 t4 ?4 o\" V
    59.       Kua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
      7 R% d0 }0 C: f  t& D
    60.        Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);7 z5 p+ P* t$ V7 |0 p3 G

    61. 6 C) n8 F& [6 T/ a6 ^9 J3 J
    62. H2 = (betacl*Kwa143*
        r/ s9 h- B5 L' u3 u. d5 z
    63.       Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*IIua132*
        [! q$ I% ^/ G. X: U' g
    64.        Iua122 - u3^2/u2^2*Iua132*IIua122) - (betacl*Kwa143*
      $ m+ E0 {4 K4 T6 u! `0 w1 L4 J
    65.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3)*(u3/u2*KKua132*- n+ y7 \- ^5 m. m2 [
    66.        Iua122 - u3^2/u2^2*Kua132*IIua122) + (betacl*Iua132*4 V2 Y$ S7 n( h; G- Y$ [
    67.       Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*
      # @8 U8 U! G# C. Y- G4 Q
    68.        Kua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (betacl*
      ' y( Q& @4 A1 ^) f$ g$ v% \) {/ Y\" N
    69.       Kua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(w4/u3*KKwa143*; z1 u5 S  B+ I9 f4 C& ~
    70.        Iua133 - w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);) D( Z) A$ f: x% C\" v

    71. ) }\" g9 Y5 K) p1 c9 i) M% R' R
    72. H3 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*- ]6 P5 I2 K! a, F9 `: X
    73.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
      9 E  F& v: R# Q4 n2 X; S5 C
    74.       Kua132*Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*: P% V9 ]& f$ g9 L7 j
    75.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
      / n: L: O% b, Z\" Q# `6 J
    76.        Kua122 - 9 @' _7 v\" |$ F5 d
    77.       u3^2*epsi2/u2^2/epsi3*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 -
      2 z; o7 z$ _- w* X3 v! L
    78.       w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 -
      8 D\" d\" Y3 T, {: ^
    79.       u3^2*epsi2/u2^2/epsi3*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 -
      % g$ J6 R7 @* C3 M) J
    80.       w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);\" k' m: e; j: c6 P$ I

    81. % z( j% A# G5 I( T4 H2 W
    82. H4 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*9 F, o  K; g# f3 @! p
    83.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) - (betacl*
      , r5 P+ k. G3 y9 s( u4 p7 w
    84.       Kua132*Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(betacl*Kwa143*: k: R- q8 d# B
    85.       Iua133*(w4^2/u3^2 - 1)/omega/epsi4/u3/a3) + (u3/u2*IIua132*
      1 D3 ^7 g0 C% h# w; ~% ?6 t+ g+ W
    86.        Iua122 -   w, c9 \  g! H) s. L
    87.       u3^2*epsi2/u2^2/epsi3*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 - % W$ z/ Q- i  q. ^
    88.       w4^2*epsi3/u3^2/epsi4*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 - . T. n' ^! r- J, S1 e, i* P7 q) O
    89.       u3^2*epsi2/u2^2/epsi3*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 -
      / R# u7 \; z; b/ u' k7 I
    90.       w4^2*epsi3/u3^2/epsi4*Kwa143*IIua133);
      & f3 f  C; N% n8 h% Z\" a- {

    91. / h- O$ U3 q6 U7 p: r- e' u; e
    92. M1 = (betacl*Iua132*Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*+ G! r. r4 s0 n\" J
    93.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*2 I4 r2 F0 H9 M, g% O+ Y/ [$ O0 {
    94.       Kua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*$ k# o  W\" A$ H( C
    95.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Kua122 -* W: M\" }\" H# W\" M5 n$ |
    96.        u3^2/u2^2*Iua132*KKua122)*(w4/u3*KKwa143*Kua133 - ' E\" K' Z, K/ e- A
    97.       w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Kua122 - % [( y9 j* {; y0 d1 I, @
    98.       u3^2/u2^2*Kua132*KKua122)*(w4/u3*KKwa143*Iua133 - . l  b( `' a& T, e/ e0 |
    99.       w4^2/u3^2*Kwa143*IIua133);9 [- \/ Q\" O5 b3 O

    100. * _! p4 T\" U2 c! w. g- F
    101. M2 = (betacl*Iua132*Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*
      , a% F- r# S\" p* F, P1 V/ p
    102.       Kwa143*Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) - (betacl*Kua132*3 u7 G5 I& _& J0 k: q% q# B
    103.       Iua122*(u3^2/u2^2 - 1)/omega/epsi3/u2/a2)*(betacl*Kwa143*. B% J\" G9 e) W7 J* X) S
    104.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3) + (u3/u2*IIua132*Iua122 -
      9 k) a6 }- ~9 u2 P( d0 v
    105.        u3^2/u2^2*Iua132*IIua122)*(w4/u3*KKwa143*Kua133 - 3 d5 r* }) U. C8 n
    106.       w4^2/u3^2*Kwa143*KKua133) - (u3/u2*KKua132*Iua122 -
      8 Q, N' @4 V/ }+ X* \- {3 @
    107.       u3^2/u2^2*Kua132*IIua122)*(w4/u3*KKwa143*Iua133 - % B+ h' S/ U- V* v: T, }$ N' D& ]
    108.       w4^2/u3^2*Kwa143*IIua133);2 z& g$ C' Z/ \/ a! W0 n, [3 ~

    109. - L1 |% h4 ^5 B4 \8 |
    110. M3 = (betacl*Kwa143*6 {! L4 W( f\" h
    111.       Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Kua122 - 3 ^+ G6 t, H( u1 M  d4 r
    112.       u3^2*epsi2/u2^2/epsi3*Iua132*KKua122) - (betacl*Kwa143*
      9 ^  D: j6 k/ [& M6 m
    113.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Kua122 - $ i( W# ]9 @7 X4 r, f8 x
    114.       u3^2*epsi2/u2^2/epsi3*Kua132*KKua122) + (betacl*Iua132*
      ; P7 x3 f8 W9 ~0 r. M$ G
    115.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 - 3 W8 @3 G  Y  R/ [  y, @' h
    116.       w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*
      1 ~$ e; z8 l% C1 g; l; ^
    117.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -   c. V' T$ k: c+ a  _- F8 D3 _, y% a
    118.       w4^2/u3^2*Kwa143*IIua133);
      5 m2 x: ?& H; c
    119. 3 D7 ~; U# z1 O* _) H
    120. M4 = (betacl*Kwa143*+ b* D0 ?9 G# u4 K' h, X\" T: i
    121.       Kua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*IIua132*Iua122 - 8 D( U, N* Y* }! `\" Y. E% W
    122.       u3^2*epsi2/u2^2/epsi3*Iua132*IIua122) - (betacl*Kwa143*# Z9 r4 ^4 m6 d- ~' n0 U9 x
    123.       Iua133*(w4^2/u3^2 - 1)/omega/mu/u3/a3)*(u3/u2*KKua132*Iua122 -   ?2 E7 d+ O4 `% I& @. R
    124.       u3^2*epsi2/u2^2/epsi3*Kua132*IIua122) + (betacl*Iua132*3 l% [% M! y( |3 a
    125.       Kua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Kua133 - 8 v- x3 Q% Q( [- X9 o& j* F+ c
    126.       w4^2/u3^2*Kwa143*KKua133) - (betacl*Kua132*9 k, f, G5 z! p3 p% E7 W
    127.       Iua122*(u3^2/u2^2 - 1)/omega/mu/u2/a2)*(w4/u3*KKwa143*Iua133 -
      ) {\" q) [2 Z3 p9 {! j, O
    128.       w4^2/u3^2*Kwa143*IIua133);8 h9 J0 c. M6 M3 S; q
    129. $ o, C) `5 p  G( Q
    130. R1 = u2^2/u1^2*Iua121*IIua111 - u2/u1*IIua121*Iua111;
      - U( G+ c. G. s: A* k
    131. T1 = u2^2/u1^2*Kua121*IIua111 - u2/u1*KKua121*Iua111;1 X4 R% U+ e* S3 F: W' e
    132. U1 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;8 g1 d) Z. l% h6 w
    133. V1 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/epsi2/u1/a1;6 V% j% x5 E3 o\" z3 S. D, h9 @6 l
    134.   W1 X8 @7 r' S+ j+ z
    135. R2 = u2^2/u1^2*epsi1/epsi2*Iua121*IIua111 - u2/u1*IIua121*Iua111;. m\" s* C; C3 a$ Y' I) b
    136. T2 = u2^2/u1^2*epsi1/epsi2*Kua121*IIua111 - u2/u1*KKua121*Iua111;
      : D6 ^0 O& ]+ d% S) I, `. A; r+ C
    137. U2 = betacl*Iua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;
      & Z' }, s% @- d9 @' G1 x
    138. V2 = betacl*Kua121*Iua111*(u2^2/u1^2 - 1)/omega/mu/u1/a1;$ i8 y+ q) {5 L

    139. - \: Y' y' y2 `! u( J
    140. xicl1 = (-R1*H1 + T1*H2 + U1*H3 - V1*H4)/(R1*M1 - T1*M2 - U1*M3 +
        [( ]! Q* i& U7 A
    141.      V1*M4);- }9 j; I9 @9 l( D1 i
    142. xicl2 = (-R2*H3 + T2*H4 + U2*H1 - V2*H2)/(R2*M3 - T2*M4 - U2*M1 + 4 z% d& g# v* q
    143.      V2*M2);( y) n0 S# F  |) ?3 y! w' j; ~

    144. ) m# u3 F9 r, U# @: g0 R
    145. x = xicl1 - xicl2;9 J- W. a3 m6 H' ~# z
    146. x1 = Re[x];
      7 p4 k& M5 H1 Y. r' A$ _
    147. x2 = Im[x];
      ' N' T0 Z1 s! A; g9 {/ m- ]5 @
    148. ! y4 e+ i\" S, I1 [' v
    149. FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];
      , m  j3 ?\" d9 k, l
    150. ]
      , w/ j  v& I1 \; S1 S/ G7 O

    151. ' G0 R1 |/ p3 `9 j( k
    复制代码
    代码如上,结果是{neffclre -> 1.33017, neffclim -> 0.0000172055}3 n2 G" U5 u. A0 n# {8 Z7 r1 O
    但我把FindRoot[{x1,x2},{{neffclre,1.333},{neffclim,0.00001}}];! N5 p: A, F3 `3 J; N: X
    换成
    3 g' O  t! a# _$ p+ k* q0 e& JFor[i = 1, i < 133, i++, neffclbase = 1.330 + 0.001*i;7 D$ t3 E9 c$ p& E; i" i
    FindRoot[{x1, x2}, {{neffclre, neffclbase}, {neffclim, 0.00001}}];; U6 ^( u7 L0 N3 o
    ]
    / o# X4 M1 g8 _. Z就会出现: k5 \/ v, {7 c6 J- T: l$ G1 U1 f
    FindRoot::lstol: 线搜索把步长降低到由 AccuracyGoal 和 PrecisionGoal 指定的容差范围内,但是无法找到 merit 函数的充足的降低. 您可能需要多于 MachinePrecision 位工作精度以满足这些容差.8 @1 |' q8 G3 O9 \4 [

    6 O- \+ O: o0 f; Z+ B请问是怎么回事?
    ; r, }9 Y& q& Z2 a8 A0 k: b- v& c) O' |  s0 w
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-5-2 07:18 , Processed in 0.408231 second(s), 49 queries .

    回顶部