QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1191|回复: 0
打印 上一主题 下一主题

奔跑吧,忽悠。数据忽悠八式

[复制链接]
字体大小: 正常 放大

180

主题

68

听众

1975

积分

  • TA的每日心情
    开心
    2015-6-19 13:01
  • 签到天数: 3 天

    [LV.2]偶尔看看I

    社区QQ达人

    跳转到指定楼层
    1#
    发表于 2015-6-8 10:39 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    奔跑吧,忽悠。数据忽悠八式

    [size=11.199999809265137px]
    现在做销售、市场的人如果不懂得数据分析,用数据说话那真是落伍了。没见很多企业领导开口就

    是“拿数据给我看,没有数据我怎么做决策啊?”。可见数据分析在当今的企业管理中占据做非常重

    要的地位,并且数据分析师也是未来十年最有前途的十大职业之一。先看一个利用数据忽悠人的案

    例:在美国和西班牙交战期间,美国海军的死亡率是千分之九,而同时期纽约居民的死亡率是千分

    之十六。后来海军征兵人员就用这些数据来证明参军更安全。你认为这个结论正确吗?当然不正

    确,这两个数字根本就是不匹配的,当兵的都是身强力壮的年轻人,而居民的死亡率是包括老弱病

    残的数据,这些人相对来说,死亡率是高的。所以正常应该是用同年龄段的海军数据和纽约居民来

    对比。其实你发现9‰和16‰根本就不具有可对比性。企业管理人员对“假”数据是深恶痛疾。原因不

    言而喻:“假数据”造成资源浪费,决策失误,贻误战机等等。简单总结一下“有问题数据”的几个方

    面,帮助大家早日练成火眼金睛。需要提醒大家的是“有问题的数据”并不代表一定是“假”的数据,

    因为有的数据是真的,但是结论确实“假”的。常见的利用数据来误导大家的情况有以下几种:一、

    随意制造“假”的数据来忽悠客户或消费者请原谅我用了“制造”这个动词。这种情况随处可见,对于

    某些人或组织来说,数据的严肃性根本就是一句空话,他们是要什么数据就编什么数据,他们的名

    字叫”编“委。对于这种情况,我们一定要多问几个为什么,问清楚数据源就可以了。记住“无数据

    (源)就没有真相”。比如报纸的发行量永远是世界上最难解的谜题,我也不知道答案,我只知道:

    1、媒体自己公布的发行量实际上是他们的最高发行记录,一般来讲大家习惯去掉“最高”二字2、当

    年某些报纸为了创造最高发行量,直接把报纸从印刷厂拉倒垃圾站,这种情况是公然而无耻的作

    假,后被禁止大家看看这句话中的数字是否有错误:公司业务员小强有24个客户,4月不重复客户

    购买比率为78%(备注:不重复客户购买比例=有订单的客户总数/总客户数)。答案是错误的,因为永

    远算不出来78%这个数据。二、定向取值问题这种一种具有隐蔽性和欺骗性的手段。何为定向取

    值?就是先假定一个结论,然后选取最利于这个结论的人群进行市场调查或研究,最后号称这个规

    律或结论具有普遍性。比如平均工资,我要让他高,就去写字楼访问,我要让他低,那就如劳务市

    场吧!这种方法是一种骗人的伎俩,要不得,可是很多人非常热衷!把这种方法用到极致的是市场

    调查公司或某些政府机关。比如某年某地区说要在半年内将房价降价多少以上,半年以后他们真的

    做到了,可是老百姓并没有感到房价下降的趋势,为什么呢?原来他们玩了个数字游戏,半年前的

    样本是城区的房价平均,半年后加上了郊区的房价后取平均。大部分市场调查公司是定向取值的热

    衷者。很多企业的老板会要求市调公司按照他们的结论来采样调查,然后用这个数据去做广告、公

    关,欺骗消费者。有些公司的调查数据是真的(即调查的样本数足够多,且没有定向选取调查对

    象),但结论却是假的。因为企业也可以定向取结论。比如(此事例是为了说明问题,假设的数

    据,千万不要当真),比如某种牙膏宣传:使用该品牌的牙膏后将使蛀牙减少23%,这个数据是市

    场调查后的数据。当然这个数据对你一定是有诱惑力的。因为你认为减少的反义词就是没减少!可

    你是否知道他的背后有可能是这样的:23%的人蛀牙减少,40%的人没有任何反应,37%的人蛀牙

    反而增多了(只是这种可能性不大)。看看这幅画你就懂了


    三、田忌赛马田忌赛马的故事大家想必都听说过,利用田忌赛马来误导的情况也是比较多见的。看

    一个例子,2010年底某知名B2C网站搞了一个“全民疯抢”活动,活动结束后,某人在微博上写道:

    就成交数据看,在大促四日里的日均交易额已经远远超过了09年度国美、苏宁和百联三家线下大卖

    场的总和日均销售额。就这句话来说是没有问题的,错在前后数据没有可对比性,用自己促销时的

    最大值和别人的常规日销售来做对比,这样的对比没有任何意思。这个就好像刘翔参加残奥会比赛

    得了冠军又能如何?根本就不是一个组别。再来看一组数据:2010年12月20日到12月26日电影

    《非诚勿扰2》和《让子弹飞》的周票房分别为2.4亿和2.1亿(备注:非2是12月22日上市,让是12

    月16日上市)。从这两个数据是否我们可以得出这样的结论:“非2”票房大大超越“让”的票房。从纯

    数据的角度来说,实际上这两个数据没有可对比性,不匹配。因为12.20-12.26是“非2”上影的第一

    周,是“让”上影的第二周。正常大片的票房高点都是在第一周。如果我们单看他们第一周的票房数

    据:让上市第一周4天票房共2.9亿,平均每天0.7亿,非2上影前5天票房2.4亿,平均票房约0.5亿

    元,“让”票房反而高很多!田忌赛马实际上就是在选择数据的结论。数据的匹配性是我们时刻都需

    要提防的,这方面是极易犯错误的,有时候我们看起来非常合理的对比也有可能是非常不合理的。

    四、数据分析的系统误差数据分析有的时候是人为因素影响,有的时候还可能有系统误差出现。举

    说来说:假设人事部要在一个公司内部调查一下大家对新来的总经理的看法,选项有五个:非常喜

    欢、喜欢、没感觉、不喜欢、非常不喜欢。要求匿名投票。收回选票后结果如下:非常喜欢25%,

    喜欢40%,没感觉20%,不喜欢10%,非常不喜欢5%。由于是匿名投票你可能认为这个数据没问

    题了吧(假设没有拍马屁的现象)。我的回答是不一定。因为很可能还有很多员工根本就没有投

    票。他们不投票的原因有可能是不知道该调查或忙没来得及投票等,还有就是这些弃权票很可能都

    是要投“不喜欢”的人,他们不想表达自己的真实想法,所以他们有“目的”的放弃了投票。想想联合

    国大会的弃权票吧,有点这个意思的吧。另外如果这个调查的五个选项改成如下排序:非常不喜

    欢、不喜欢、没感觉、喜欢、非常喜欢。还是刚才投完票的那些人来投,结果可能不一样哦!五、

    眼见为虚、图表的忽悠如果上面的几点还不能忽悠你,那再来个数据加图表,双重忽悠。让你觉得

    有图有真相。看看下面这两张图,你喜欢那张?


    发现不同了吗?其实上面两张图的数据源一模一样,市场占有率都是从05年的23.5%增长到2010年

    24.8%,仅仅增长了1.3%。第一张图初一看市场占有率增长得气势如虹,第二张毫无亮点!有些公

    司更缺德,把左边的数据比率还給隐藏起来,名为保护公司机密!如果那样你就彻底被忽悠了。对

    某些人来说,这两张图各有用处,比如第一张可以給消费者看,可以夸大公司的市场占有率,第二

    张在向董事局要钱的时候給董事们看,说明市场占有率增长不大,需要投入!当你需要骂人的时候

    第二张也可以给下属看。当然这是开玩笑,Y轴的值一般EXCEL会自动调整,不过也可以人为调

    整,但如果调整过大(比如本例)就一定要醒目的标注出来,否则就有误导之嫌!六、预设结论这

    个好理解,就是先有结论后用数据来证明这个结论。比如下面这个砖家的分析,为了去匹配国家提

    出的65岁退休年龄他也是蛮拼的:




    再看一个预设结论的案例,继续上图。这是早几年微博疯传的一张图,原题为“我终于发现1-9的秘密”。




    这个“秘密”就是1有一个角,2有两个角,3有三个角......依此类推。这就是预设结论的典范。其中4

    有4个角我勉强能接受,7有7个角怎么讲?还有最奇葩的是9,为了证明9有9个角作者也是蛮拼的。

    其实,我们很多企业领导人有时候会无意识的犯预设结论的毛病(有意识的预设结论就不说了)。

    比如某天领导对下属说:小王,你看看这个月销售不好是不是会员复购率低的原因?这算轻度的预

    设结论吧,下属会朝着你指明的复购率去找问题。重度预设结论是那种领导?比如在年底是,老板

    对小王说了:小王,你分析分析明年我们的目标能完成10亿吗?这算暗示吗?这是明示啊。你放

    心,“懂事”的小王一定会去想办法证明这10亿目标的合理性,可是苦了的就是下面那些卖命的兄弟

    们。七、算也算不清楚的各种率据说离婚率前三位城市是北京39%,上海38%,深圳36%(数据来

    源于新闻媒体)。仔细一查,发现这个离婚率公式是这样的:离婚率=离婚数/结婚总数,乍一看

    ,没有任何问题。2010年的离婚率就是2010年离婚数除以2010年结婚数?错了!不是苹果对苹果!

    2010年离婚的人和结婚的人根本就不是一个概念。这样计算的结果不但毫无可信度,而且还給被广

    大人民群众造成误解!目前媒体上有关离婚率的数字应该都是这样计算出来的。那怎样计算离婚率

    呢?我们可以将上面的公式修改一下就可以了。2000年结婚人群在2010年的离婚率=2000年结婚

    且2010年离婚总数/2000年的结婚总数。顺便说一下,如果我们对2000年结婚人群每年都计算一个

    离婚率的话,你还可以分析是否有七年之痒存在。很多零售企业每个月都会计算退货率,实际上和

    离婚率是一个概念,需要分门别类才能正确的计算出来的。八、“如果...那么...”忽悠法这种忽悠方法

    常存在于一些创业公司或者骗子公司中。常用句式是“如果全国人民每人给我一分钱,那我就是千万

    富翁了”,大家是不是很熟悉这种忽悠套路?进化版:中国有13亿人口,其中我们产品的目标人群占

    30%,如果其中有20%的人购买我们的产品,每人消费100块的话。那我们的销售额就能做到近100

    亿,所以说这个市场规模很大,我们有很大的机会!还有这个,春节期间只2天时间微信便绑定个

    人银行卡2亿张。若30%的人发100元红包,共形成60亿元的资金流动,延期一天支付,民间借贷目

    前月息2%,每天保守收益就420万元,若30%的用户没选择领取现金,那么其账户可以产生18亿元

    的现金沉淀,无利息成本(via@数据观 )如果你们注意一下,目前我们很多微商是很流行这种忽

    悠术。数据障眼法很多,特别是在中国这个盛产山寨和骗子的地方,所以各位,还是擦亮自己的眼

    睛吧。祝你早日练成火眼金睛。via @数据化管理



    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-5-11 19:45 , Processed in 0.383596 second(s), 49 queries .

    回顶部