- 在线时间
- 58 小时
- 最后登录
- 2019-4-25
- 注册时间
- 2015-6-2
- 听众数
- 13
- 收听数
- 1
- 能力
- 0 分
- 体力
- 892 点
- 威望
- 0 点
- 阅读权限
- 40
- 积分
- 359
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 164
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 16
升级   19.67% TA的每日心情 | 开心 2017-9-15 09:46 |
---|
签到天数: 90 天 [LV.6]常住居民II
- 自我介绍
- 不念过去,不恋曾经。
 群组: 2016国赛备战群组 |
分治算法应用实例:
找出伪币
给你一个装有1 6个硬币的袋子。1 6个硬币中有一个是伪造的,并且那个伪造的硬币比真的硬币要轻一些。你的任务是找出这个伪造的硬币。为了帮助你完成这一任务,将提供一台可用来比较两组硬币重量的仪器,利用这台仪器,可以知道两组硬币的重量是否相同。比较硬币1与硬币2的重量。假如硬币1比硬币2轻,则硬币1是伪造的;假如硬币2比硬币1轻,则硬币2是伪造的。这样就完成了任务。假如两硬币重量相等,则比较硬币3和硬币4。同样,假如有一个硬币轻一些,则寻找伪币的任务完成。假如两硬币重量相等,则继续比较硬币5和硬币6。按照这种方式,可以最多通过8次比较来判断伪币的存在并找出这一伪币。
另外一种方法就是利用分而治之方法。假如把1 6硬币的例子看成一个大的问题。第一步,把这一问题分成两个小问题。随机选择8个硬币作为第一组称为A组,剩下的8个硬币作为第二组称为B组。这样,就把1 6个硬币的问题分成两个8硬币的问题来解决。第二步,判断A和B组中是否有伪币。可以利用仪器来比较A组硬币和B组硬币的重量。假如两组硬币重量相等,则可以判断伪币不存在。假如两组硬币重量不相等,则存在伪币,并且可以判断它位于较轻的那一组硬币中。最后,在第三步中,用第二步的结果得出原先1 6个硬币问题的答案。若仅仅判断硬币是否存在,则第三步非常简单。无论A组还是B组中有伪币,都可以推断这1 6个硬币中存在伪币。因此,仅仅通过一次重量的比较,就可以判断伪币是否存在。
假设需要识别出这一伪币。把两个或三个硬币的情况作为不可再分的小问题。注意如果只有一个硬币,那么不能判断出它是否就是伪币。在一个小问题中,通过将一个硬币分别与其他两个硬币比较,最多比较两次就可以找到伪币。这样,1 6硬币的问题就被分为两个8硬币(A组和B组)的问题。通过比较这两组硬币的重量,可以判断伪币是否存在。如果没有伪币,则算法终止。否则,继续划分这两组硬币来寻找伪币。假设B是轻的那一组,因此再把它分成两组,每组有4个硬币。称其中一组为B1,另一组为B2。比较这两组,肯定有一组轻一些。如果B1轻,则伪币在B1中,再将B1又分成两组,每组有两个硬币,称其中一组为B1a,另一组为B1b。比较这两组,可以得到一个较轻的组。由于这个组只有两个硬币,因此不必再细分。比较组中两个硬币的重量,可以立即知道哪一个硬币轻一些。较轻的硬币就是所要找的伪币。
求最值
在n个元素中找出最大元素和最小元素。我们可以把这n个元素放在一个数组中,用直接比较法求出。算法如下:
void maxmin1(int A[],int n,int *max,int *min)
{ int i;
*min=*max=A[0];
for(i=0;i <= n;i++)
{ if(A[i]> *max) *max= A[i];
if(A[i] < *min) *min= A[i];
}
}
上面这个算法需比较2(n-1)次。能否找到更好的算法呢?我们用分治策略来讨论。
把n个元素分成两组:
A1={A[1],...,A[int(n/2)]}和A2={A[INT(N/2)+1],...,A[N]}
分别求这两组的最大值和最小值,然后分别将这两组的最大值和最小值相比较,求出全部元素的最大值和最小值。如果A1和A2中的元素多于两个,则再用上述方法各分为两个子集。直至子集中元素至多两个元素为止。
例如有下面一组元素:-13,13,9,-5,7,23,0,15。用分治策略比较的算法如下:
void maxmin2(int A[],int i,int j,int *max,int *min)
/*A存放输入的数据,i,j存放数据的范围,初值为0,n-1,*max,*min 存放最大和最小值*/
{ int mid,max1,max2,min1,min2;
if (j==i) {最大和最小值为同一个数;return;}
if (j-1==i) {将两个数直接比较,求得最大会最小值;return;}
mid=(i+j)/2;
求i~mid之间的最大最小值分别为max1,min1;
求mid+1~j之间的最大最小值分别为max2,min2;
比较max1和max2,大的就是最大值;
比较min1和min2,小的就是最小值;
}
分治算法应用场景
运用分治策略解决的问题一般来说具有以下特点:
1、原问题可以分解为多个子问题
这些子问题与原问题相比,只是问题的规模有所降低,其结构和求解方法与原问题相同或相似。
2、原问题在分解过程中,递归地求解子问题
由于递归都必须有一个终止条件,因此,当分解后的子问题规模足够小时,应能够直接求解。
3、在求解并得到各个子问题的解后
应能够采用某种方式、方法合并或构造出原问题的解。
不难发现,在分治策略中,由于子问题与原问题在结构和解法上的相似性,用分治方法解决的问题,大都采用了递归的形式。在各种排序方法中,如归 并排序、堆排序、快速排序等,都存在有分治的思想。
-The 52th day
|
|