适应度函数 ( Fitness Function ):用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。
0 m1 ]% F6 i5 U! X& d0 ~# n/ s+ A& O7 E7 H8 E 三.基本遗传算法的伪代码 : c& N3 K% k2 q3 d- t Z/ O: H8 g5 l& I- J
[url=][/url]: ]" G3 s2 a, i) T; I8 M 基本遗传算法伪代码/* ; K4 X q" Q! i) ~7 ~+ d' f* Pc:交叉发生的概率 % |' g0 b1 _7 j( F' i5 z* Pm:变异发生的概率, D7 Q7 y" g+ I! ~; m
* M:种群规模 4 `/ F( a3 W& Z& ?2 a* G:终止进化的代数 9 X- X4 z6 t: {) P* Tf:进化产生的任何一个个体的适应度函数超过Tf,则可以终止进化过程 / L: a+ N- L# e5 _3 N; s*/0 I( W# E% C) E( w
初始化Pm,Pc,M,G,Tf等参数。随机产生第一代种群Pop% I E% B- y( l7 C* V+ d# v4 L
F) z1 u9 L. d# N% t; A
do0 A; ]+ @' F1 I$ q8 T5 d J" |
{ 0 c9 ~5 k# T& P& N( ` ]9 `
计算种群Pop中每一个体的适应度F(i)。5 r) c2 ?8 o! O' o9 c% o. x# v
初始化空种群newPop! k# B7 }' N: z
do, h$ N! N5 S/ ]: O8 `5 j
{ 5 x0 O; [, \7 q7 D' w 根据适应度以比例选择算法从种群Pop中选出2个个体$ N" u& L% a3 h) d% O
if ( random ( 0 , 1 ) < Pc )( ~2 G( b N$ N' O" [
{ 6 `' N8 V6 D# Y! C7 o; @ 对2个个体按交叉概率Pc执行交叉操作7 Z) {4 y% [3 ^0 b. X
}' {$ g- ~8 x/ f3 d. E
if ( random ( 0 , 1 ) < Pm )# y% a; X& v# g# Q7 D3 b
{ 3 j: u$ _2 ], Y7 a! ^/ ~8 d 对2个个体按变异概率Pm执行变异操作 . o+ Z5 n) ]& D& T/ ~ }, @: J; h' Y% Q+ q- l# b2 K e" ?
将2个新个体加入种群newPop中% }$ F# J6 I# p' h5 \; x1 ]8 Y/ K
} until ( M个子代被创建 )% @ d' B, Z9 w+ O. B
用newPop取代Pop- ~& }( m- `' g
}until ( 任何染色体得分超过Tf, 或繁殖代数超过G ) & d6 O! h9 s9 `% K: Q& ` # b8 F( Q4 Q/ c# W# g: A( y; E8 L# V! i
[url=][/url] 3 ~9 H6 j4 a# I. K ; e/ [( k6 | {! ]9 y6 M5 Q" d" G) w# X0 o
9 r7 i1 u3 |) | i! N+ Y 四.基本遗传算法优化
6 a1 q J+ T9 x) _[url=][/url] 8 z/ ]! l3 E$ @TSPFitnessFunction类using System;, p; o! b7 S' w/ Y3 n. R
using AForge.Genetic;: K e2 A! B" F3 u9 d
; i7 U8 f7 S% H* W7 I- enamespace GenticTSP3 w4 M5 Y1 `# ?. ^/ @/ U% {- W
{) |5 U5 H6 x2 v P" V
///<summary>9 t3 i5 t1 i- E1 E: Q
/// Fitness function for TSP task (Travaling Salasman Problem)% m( i* `% a% z9 s* ^7 S( o
///</summary>; Z' E2 n$ L; ~) t0 C- q5 U
publicclass TSPFitnessFunction : IFitnessFunction ( _ |) G9 q1 K: U$ }" W{( L: F( D, l+ T- d \
// map0 W+ y" O: |/ n, X. E# l" Q
privateint[,] map =null; . ~+ \9 Q, g3 x6 L( W0 \# N4 x' b8 U" e* v8 ?- f% a0 k2 Y- r a
// Constructor9 a$ d$ ]9 n+ f+ E# j( n1 f( }
public TSPFitnessFunction(int[,] map) / K( Y! R: {0 K( @1 D! k+ D{* l) H; }% P: H8 K0 x6 |) O6 o
this.map = map; 2 }( H/ a, G& d( s}7 V( C: z$ R* d% S
9 k- I1 V7 }* X7 G T- {
///<summary>7 n# w" u) C* z
/// Evaluate chromosome - calculates its fitness value , L% z9 R0 Q) F, \6 m% S///</summary>8 X( T7 P2 {+ l
publicdouble Evaluate(IChromosome chromosome). E% z; h @) j2 I$ _3 ^6 g
{ 9 H& G2 p# k, j) G1 R. _2 J5 breturn1/ (PathLength(chromosome) +1); " C+ K' x% Y) H- n3 n; F( T" m}9 E B; g9 D2 I
' N2 g2 M; ?; S8 x1 z: J2 Z
///<summary> % @" v0 Y; k' g m4 m, i \+ [/ {/// Translate genotype to phenotype ! ~: t5 x6 S4 j* n. Z% ?; ~- u4 I
///</summary> 7 y' W: @" F1 B+ b5 G% cpublicobject Translate(IChromosome chromosome) $ n7 A% a: R: g0 p{& v6 h6 ]- D/ y! j* u R6 D3 N
return chromosome.ToString();5 J; o; i$ _+ U
}3 U/ o' ?% U" ]* Y( D, c8 R
. ~: e8 @* B2 I) t3 ?) S
///<summary>2 f" m: D: V7 K0 _' X z, e( |& c
/// Calculate path length represented by the specified chromosome " [ l5 `; A7 O///</summary>+ D- e8 O/ O' }$ ~4 A: G
publicdouble PathLength(IChromosome chromosome)# F3 x/ }& u' [ x; P6 V' y
{ 4 H! d+ K% B3 ~* t/ m% e// salesman path " n- H" J9 P4 `4 mushort[] path = ((PermutationChromosome)chromosome).Value; 9 G) G8 W/ M0 i 9 u$ u! v$ |2 }/ R// check path size & K" F. c1 Q+ s! [% _. lif (path.Length != map.GetLength(0)) ; s: l6 h* U+ L# l0 M7 y/ N- B{( W2 s$ J3 ~7 V1 P* J7 {! Q5 m! E I
thrownew ArgumentException("Invalid path specified - not all cities are visited");7 v) q" Q$ v. ?6 q1 q. i# }' Z
} + P' g# p2 \5 _7 f# a* W! b. |6 k2 l- A* z
// path length {3 v! T6 O3 p. s' X
int prev = path[0]; % c) g% M7 h7 N3 \4 tint curr = path[path.Length -1];2 Y; g+ i3 r7 R+ X* Y; O0 Z+ M/ n9 s
+ A0 e. C2 h5 ^6 x b7 F& T9 `
// calculate distance between the last and the first city : E. M0 T' ^2 T: j- l# `- C. i! ], \double dx = map[curr, 0] - map[prev, 0];9 {: [' R8 C$ v; [, z( _% B$ h
double dy = map[curr, 1] - map[prev, 1]; 2 e; A6 x9 X# R( n* h' d# c! Ndouble pathLength = Math.Sqrt(dx * dx + dy * dy);* A; D9 {; m2 `0 `6 l
$ ]9 J( a7 |6 R6 J6 a3 P0 p. [: l// calculate the path length from the first city to the last& `- k- }( p# c4 M0 p' p, o% s
for (int i =1, n = path.Length; i < n; i++)& a/ [& M o/ C! t/ A! Y8 q
{$ N' m' A) W# `5 n
// get current city 0 m A U8 t0 Z3 }8 H$ \curr = path;7 Y1 U: [1 Q9 U+ [1 o0 P O) N8 M
. `/ L; l: \2 W+ b6 q% w// calculate distance' E* T- n! J2 k% i$ i' F1 |1 `
dx = map[curr, 0] - map[prev, 0]; | H) l6 C1 s
dy = map[curr, 1] - map[prev, 1];" y/ m: l4 w* {$ J
pathLength += Math.Sqrt(dx * dx + dy * dy); ) Y& i8 k8 n, m2 \2 M) W6 _5 t! S+ O/ q' b3 L! E
// put current city as previous $ t9 `3 `; f6 @ o& i" Eprev = curr;* M( P4 u3 u6 }! d5 }$ D8 q
} 4 V( y4 h( w( E) R# y( K) F: ^# Z. p, ^( Z2 W
return pathLength; / w f6 O- J( l, C}# z9 _. {! i: U2 F& f2 a$ \
}1 E3 M2 l9 ~5 V, m
}) w* N2 p0 V5 A+ e 5 j& N7 R* b* r7 z- E