QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 4950|回复: 0
打印 上一主题 下一主题

[问题求助] 关于弗洛伊德算法的严格数学证明(草稿3)

[复制链接]
字体大小: 正常 放大
释永思        

23

主题

13

听众

146

积分

升级  23%

  • TA的每日心情
    难过
    2016-5-14 14:04
  • 签到天数: 18 天

    [LV.4]偶尔看看III

    自我介绍
    软件开发工程师

    社区QQ达人

    跳转到指定楼层
    1#
    发表于 2016-4-22 17:08 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    关于弗洛伊德算法的严格数学证明(草稿3):- }. {$ \# @4 O
                       2016.04.227 O* ?4 r' V. H3 {: [; t6 m. |
    0 U, c$ ~# m2 L; c( j
    经过弗洛伊德算法的三重循环后,任意两点之间的距离已是最短路。 - ^6 W4 G. P/ X& {) s9 L% j- Z- D
    仍用数学归纳法,假设N <= n时,弗洛伊德算法是正确的,要证明,N = n+1时,弗洛伊德算法仍是成立的。 ' m( n- a+ F% j, @, h9 |
    设k = n+1是最后一点。 , |9 V# ~/ J8 }" D) q1 S4 x
    任意两点间的最短距,如果是不经过k点的,显然floyd算法成立。
    2 D! [! m* F6 i/ z1 ]' v! @( B8 R任意两点间AB的最短距,如果是经过k点的。1 B/ X" ]5 b- N
    设路径为p=A....k....B,如果路径p中所有的顶点数P<=N,那么,把K点加入原顶点集合,把无关的顶点去掉,这三重循环就是N<=n的情形,所以弗洛伊德算法仍是成立的。
    8 u% f+ r3 p: T, p: p$ u9 O如果路径p中所有的顶点数P=N+1,那么这是一条直线来的,没有任何分支的。要证弗洛伊德算法成立,可能不难了。每处理一个顶点中间点,必是连接一个线段,所以弗洛伊德算法得证。
    5 s/ @, \& k& e+ U/ m1 }7 G. Y所以弗洛伊德算法成立。1 r6 t8 \9 ^0 }6 ^( R2 g* s
    1 W$ K- Y# d" U/ Z& [' |( J
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-9-18 04:49 , Processed in 0.815210 second(s), 55 queries .

    回顶部