- 在线时间
- 0 小时
- 最后登录
- 2009-5-18
- 注册时间
- 2009-5-17
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 2 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 6
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 10
- 主题
- 1
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   1.05% 该用户从未签到
 |
2.1 蒙特卡罗算法" |7 ]1 p4 Q- M2 W
大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态
0 _& Y& |6 f6 E0 p分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年y的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。/ T5 E, | _9 `" a: L6 w
2.2 数据拟合、参数估计、插值等算法 W2 N7 D* [9 ]& _
数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的走向进行处理。此类问题在MATLAB中有很多现成的函数可以调用,熟悉MATLAB,这些方法都能游刃有余的用好。
& F& s2 |7 K, U" n/ m2.3 规划类问题算法
: s& U$ X g) A* [6 b竞赛中很多问题都和数学规划有关,可以说不少的模型都可以归结为一组不等式作为约束条件、几个函数表达式作为目标函数的问题,遇到这类问题,求解就是关键了,比如98年B 题,用很多不等式完全可以把问题刻画清楚,因此列举出规划后用Lindo、Lingo 等软件来进行解决比较方便,所以还需要熟悉这两个软件。* s: C' d" [ M2 {7 ~4 D
2.4 图论问题
1 t3 v" m$ Y& l2 O1 Q; F% M( D8 x98 年B 题、00 年B 题、95 年锁具装箱等问题体现了图论问题的重要性,这类问题算法有很多,包括:Dijkstra、Floyd、Prim、Bellman-Ford,最大流,二分匹配等问题。每一个算法都应该实现一遍,否则到比赛时再写就晚了。4 b, E3 l8 Z4 z6 ~4 [
2.5 计算机算法设计中的问题
! E1 C; V: H. x+ W3 K4 j计算机算法设计包括很多内容:动态规划、回溯搜索、分治算法、分支定界。比如92 年B 题用分枝定界法,97 年B 题是典型的动态规划问题,此外98 年B 题体现了分治算法。这方面问题和ACM 程序设计竞赛中的问题类似,推荐看一下《计算机算法设计与分析》(电子工业出版社)等与计算机算法有关的书。
5 Q. U2 U2 {/ j# n+ Z2.6 最优化理论的三大非经典算法
n/ f: ~5 G2 K t/ ]这十几年来最优化理论有了飞速发展,模拟退火法、神经网络、遗传算法这三类算法发展很快。近几年的赛题越来越复杂,很多问题没有什么很好的模型可以借鉴,于是这三类算法很多时候可以派上用场,比如:97 年A 题的模拟退火算法,00 年B 题的神经网络分类算法,象01 年B 题这种难题也可以使用神经网络,还有美国竞赛89 年A 题也和BP 算法有关系,当时是86 年刚提出BP 算法,89 年就考了,说明赛题可能是当今前沿科技的抽象体现。03 年B 题伽马刀问题也是目前研究的课题,目前算法最佳的是遗传算法。" b. w9 K3 E, B7 J9 {" n
2.7 网格算法和穷举算法& {' h- E, U o. Y
网格算法和穷举法一样,只是网格法是连续问题的穷举。比如要求在N 个变量情况下的最优化问题,那么对这些变量可取的空间进行采点,比如在[a; b] 区间内取M +1 个点,就是a; a+(b¡a)=M; a+2 ¢ (b ¡ a)=M; ¢ ¢ ¢ ; b 那么这样循环就需要进行(M + 1)N 次运算,所以计算量很大。
" F1 S3 S" A; {/ |比如97 年A 题、99 年B 题都可以用网格法搜索,这种方法最好在运算速度较快的计算机中进行,还有要用高级语言来做,最好不要用MATLAB 做网格,否则会算很久的。穷举法大家都熟悉,就不说了。
* m7 G: _+ h, E& S; ~5 r1 C- |$ }2 K2.8 一些连续数据离散化的方法
3 w, o; q# [, a大部分物理问题的编程解决,都和这种方法有一定的联系。物理问题是反映我们生活在一个连续的世界中,计算机只能处理离散的量,所以需要对连续量进行离散处理。这种方法应用很广,而且和上面的很多算法有关。事实上,网格算法、蒙特卡罗算法、模拟退火都用了这个思想。! z8 P( e. }) B7 s3 A
2.9 数值分析算法
7 \1 ?1 M" K4 k1 j+ n8 f这类算法是针对高级语言而专门设的,如果你用的是MATLAB、Mathematica,大可不必准备,因为象数值分析中有很多函数一般的数学软件是具备的。
! I/ Z- V% b; \2.10 图象处理算法
! Q3 n# `) ^* E3 Q0 W. @" V& E- E01 年A 题中需要你会读BMP 图象、美国赛98 年A 题需要你知道三维插值计算,03 年B 题要求更高,不但需要编程计算还要进行处理,而数模论文中也有很多图片需要展示,因此图象处理就是关键。做好这类问题,重要的是把MATLAB 学好,特别是图象处理的部分。 |
zan
|