- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit4 ~7 s0 ?) B( a* C7 l5 V) q4 j
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k43 a, \( h/ {: _3 T
% k6->k6 k7->k70 R" S# S& J% k2 z6 N: q, v: A# H
% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);9 r6 }: ]7 l5 r
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
5 E( M' I- M' Y* _8 Y" I7 a% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
2 S/ {/ D# E, w7 I) T. D% dLadt = k(7)*C(Hmf);9 J0 D8 Z1 Y6 D. Z. D* [# }
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
% ?$ |0 \; z7 c: H5 u/ Mclear all% O* b5 }9 P& M1 z$ G; Q/ n& a
clc% X H( R/ V% R- g1 d
format long
2 V7 r- B. d& Y9 m" c& g% t/min Glc Fru Fa La HMF/ mol/L
( I. G( U5 k, B% |; I Kinetics=[0 0.25 0 0 0 0
, ?7 a. C9 _! T- U: W) m' b: j 15 0.2319 0.01257 0.0048 0 2.50E-04 a; ?4 R: [* l( a( u- ]
30 0.19345 0.027 0.00868 0 7.00E-04% j ?# R! ?" k! h9 _4 Y
45 0.15105 0.06975 0.02473 0 0.0033" H- W% }4 Q+ n1 G- E. x6 i! L
60 0.13763 0.07397 0.02615 0 0.004287 D& `: \. i+ r4 s @
90 0.08115 0.07877 0.07485 0 0.01405
3 x' C/ W8 C0 t6 e7 X 120 0.0656 0.07397 0.07885 0.00573 0.02143
* T. t- X k7 ^8 h% b3 j- F6 n 180 0.04488 0.0682 0.07135 0.0091 0.03623
7 @$ J, s+ W$ u q5 q) Q 240 0.03653 0.06488 0.08945 0.01828 0.05452
0 d( R1 a: L2 a3 O+ \ 300 0.02738 0.05448 0.09098 0.0227 0.05976 x+ {+ l, P# r' L3 |- J
360 0.01855 0.04125 0.09363 0.0239 0.06495];. m* o1 F0 _% r2 |
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值
; g% k0 A# x7 }! I5 Zlb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限) @/ W1 T+ D# f6 |4 T O3 V _ [
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
, c; w3 D0 e$ E" N7 dx0 = [0.25 0 0 0 0];
?2 J0 z' b; I7 k6 wyexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
0 Y c- V( u( ^; A% warning off
* [1 j2 [0 e; K, K+ C# [% 使用函数 ()进行参数估计, _. m3 P5 f: H0 a& N. m6 O1 a
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);2 A; i: z. P2 p' d& s6 n
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')8 @( e# b; E4 U) X6 h9 X
fprintf('\tk1 = %.11f\n',k(1))% ~% f! i' a5 Q4 v- q% X
fprintf('\tk2 = %.11f\n',k(2))& ]+ ^2 m$ X: `( k( f* o
fprintf('\tk3 = %.11f\n',k(3))- `0 }! A- k* g
fprintf('\tk4 = %.11f\n',k(4))
9 r% N2 r4 h4 V- K/ C8 Ffprintf('\tk5 = %.11f\n',k(5))
' z Q$ b1 d& w0 k Rfprintf('\tk6 = %.11f\n',k(6))( B' ~# a3 p1 x
fprintf('\tk7 = %.11f\n',k(7))9 s$ K$ o1 ^2 V
fprintf('\tk8 = %.11f\n',k(8)), T6 ]6 c" Q: [* p# w7 ]
fprintf('\tk9 = %.11f\n',k(9))7 o }8 x2 d$ B3 B/ V# p. \0 z
fprintf('\tk10 = %.11f\n',k(10))
Z6 |4 G G. H4 R( x( z& z) ^fprintf(' The sum of the squares is: %.1e\n\n',fval)
& P; S) v5 I( ^8 l. P4 wk_fm= k;1 G8 {. }$ r) ?: l3 j
% warning off
; Q/ p% y, c& g% 使用函数lsqnonlin()进行参数估计9 @+ O2 I0 w1 l; e0 n. l9 B5 f
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
1 Y+ R* N# N9 f0 u! G' ~* l lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
. l9 d. h- v6 lci = nlparci(k,residual,jacobian);
# Q7 u2 M( n* g; R) Ffprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')2 `, y @, O( ^" n
fprintf('\tk1 = %.11f\n',k(1))7 b1 n9 o+ n1 y, H! @6 k' a1 a
fprintf('\tk2 = %.11f\n',k(2))& k! g2 C5 @( v
fprintf('\tk3 = %.11f\n',k(3)), N0 t( {) x$ Z+ H8 V- {# e
fprintf('\tk4 = %.11f\n',k(4))
6 J8 H- _5 q% I/ hfprintf('\tk5 = %.11f\n',k(5))
& C- S7 Y& Z6 O6 Y. u* _fprintf('\tk6 = %.11f\n',k(6))
4 V$ z# Y( }+ ?, B j, I' ~" O: x: V4 gfprintf('\tk7 = %.11f\n',k(7))
* s* p1 A, o x$ S7 n( dfprintf('\tk8 = %.11f\n',k(8))
1 s7 ]+ G+ o+ B( o" k! Vfprintf('\tk9 = %.11f\n',k(9)), K4 D1 i* W3 F* R
fprintf('\tk10 = %.11f\n',k(10))$ w Y8 V2 W/ d& ?4 O2 a
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
' a( T8 o6 I8 r! ek_ls = k;* D, _! h C. D* c
output4 W' S$ [# h4 H5 i8 {
warning off
# G: X2 W" O T7 s% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
: o. N; l+ z0 N" y2 p- Ak0 = k_fm;/ q* ]1 r. \& A# V5 b3 q
[k,resnorm,residual,exitflag,output,lambda,jacobian] = .... k* X0 T7 ~1 i
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); / }3 b s, K! p- K% P6 Y
ci = nlparci(k,residual,jacobian);. | f9 H& U3 _' X1 b9 C
fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
- |) a- l0 B0 P6 Qfprintf('\tk1 = %.11f\n',k(1))
- S+ W5 J! p2 h! ~6 n' Gfprintf('\tk2 = %.11f\n',k(2))* D1 _/ D5 k5 n! L& U8 h% a+ j0 T: q7 U, u
fprintf('\tk3 = %.11f\n',k(3))! X9 j1 ]: D" u3 r: Z
fprintf('\tk4 = %.11f\n',k(4))
9 A( m& G. ]4 c1 U) ` @fprintf('\tk5 = %.11f\n',k(5))
- k/ l8 }1 ^1 p8 H3 l Gfprintf('\tk6 = %.11f\n',k(6))# O$ G. j, r- w6 `% ?
fprintf('\tk7 = %.11f\n',k(7))
. L+ I6 ^0 B: ~6 ?$ b; P. K! V% Wfprintf('\tk8 = %.11f\n',k(8))5 Z) R' ]' ] S9 R% `" X8 _8 z9 q
fprintf('\tk9 = %.11f\n',k(9))
- J9 ]1 c. v# k% a8 J; a# M1 Xfprintf('\tk10 = %.11f\n',k(10))
( @ q6 f; \4 _% G0 L- [- ifprintf(' The sum of the squares is: %.1e\n\n',resnorm); m% I# M2 U& ?
k_fmls = k;4 H+ O ]9 j" @" v+ N; M
output! _/ ~0 `' u7 a) `
tspan = [0 15 30 45 60 90 120 180 240 300 360];
5 J" r; `% j; I' t8 l[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
- S% M' @4 ^/ h5 c: S3 P0 C! o& ~figure;0 k) V3 U, J @, ?2 }
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')
6 O9 x6 m0 n% S" ~7 Q6 h Afigure;plot(t,x(:,2:5));
2 b8 ~' }! t. c& sp=x(:,1:5)1 y' O1 G- `8 Q# F" \* ]- J% {9 D
hold on. ?! T9 |7 F) G5 p% v- K
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real'), j$ w) Z$ x+ K
9 J/ u* F% A; Z5 |2 C4 f; Z' H! w7 p! q+ O! B
* g; P6 m* ~" Y% w5 N1 C( Y
function f = ObjFunc7LNL(k,x0,yexp)
4 w) ]! R$ ]) h- Z5 Z/ a0 n6 R B3 Etspan = [0 15 30 45 60 90 120 180 240 300 360];
, L- v# q; e* p! R; R[t, x] = ode45(@KineticEqs,tspan,x0,[],k);
3 U* I/ e2 i) s8 o" N1 t& Jy(:,2) = x(:,1);3 g v u2 u8 ~* i% D
y(:,3:6) = x(:,2:5);
- _: d! x% d7 F9 Q: F" sf1 = y(:,2) - yexp(:,2);5 [4 `( G" M: ?
f2 = y(:,3) - yexp(:,3);
* E% k' q% k% zf3 = y(:,4) - yexp(:,4);$ q1 l! x# W" X" J
f4 = y(:,5) - yexp(:,5);
! c5 @2 n* b# g% B: B* {- @: Q1 wf5 = y(:,6) - yexp(:,6);
9 P! l1 f6 r' @" t. |4 Tf = [f1; f2; f3; f4; f5];! \1 @1 L/ e; i" b+ e
" N- F( Y& \6 o5 o+ f8 L
: Z n9 e) G0 a# R% v, h! R7 B3 d* h* h+ z3 s F1 E3 j0 ~3 ?8 g; j
function f = ObjFunc7Fmincon(k,x0,yexp)
" Q/ k" E: w% S8 M4 A% Z- ntspan = [0 15 30 45 60 90 120 180 240 300 360];/ J0 p+ F/ s; N, H$ A* @( X5 `: \2 w L
[t x] = ode45(@KineticEqs,tspan,x0,[],k);
[( i" a- y: o' Py(:,2) = x(:,1);
. ^* n# c! e3 D0 V0 i* Hy(:,3:6) = x(:,2:5);3 }* ?3 x& l& A
f = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) .../ t# J1 [4 H+ E+ p
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ... ~/ h8 `1 [" W" k: \
+ sum((y(:,6)-yexp(:,6)).^2) ;/ E' e# `; d* ^5 R: n- R
" Y6 ]2 ]! d- d+ `( T* y3 D
3 _+ e) W* B+ k0 o; G8 N) X+ t; J- }$ W: C' c) Q5 d
- y4 V" b0 ~" Q: h V- zfunction dxdt = KineticEqs(t,x,k)3 \' d" ~3 S6 m
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);+ s8 r+ P4 w6 t2 ~0 C
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);2 ]3 k5 p- p/ U
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
5 `% i/ K6 F+ _+ v4 n6 E8 v RdLadt = k(7)*x(5);& n6 {+ S- @$ \
dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
1 I+ _( p. @5 _- a* R- Ldxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
/ J0 S. m2 `; P3 v0 G
/ C! ?0 n5 i5 q, Y" R
/ G! O; \! N5 b+ ]4 t: D2 q |
zan
|