- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit
% E1 Y8 S; F: |2 T# g( r0 l% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4
" B+ V x! d" X2 A+ Y% k6->k6 k7->k7
! q- `" m' [8 F5 j+ F% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
1 N% w4 N! N7 E2 I- l% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
7 R1 S# C+ F# }+ J1 |. X) D% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);; g0 q9 _! s# R: {) O$ E1 j
% dLadt = k(7)*C(Hmf);, M. O5 O2 w2 Y+ A
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);/ k6 Q" r6 n& r/ f, @1 b. L
clear all
5 W1 p3 ^; ?! Aclc
" ?/ c: _6 Y# L9 |8 kformat long" @" n8 W- X3 Y) Z9 {" G
% t/min Glc Fru Fa La HMF/ mol/L
+ J# D5 E0 E4 X4 A. U Kinetics=[0 0.25 0 0 0 0
9 z E C; h' N. ]# G' z. Q' ` 15 0.2319 0.01257 0.0048 0 2.50E-04
) t) m9 [% V8 x2 I& j8 O# h* e1 ] 30 0.19345 0.027 0.00868 0 7.00E-04
; e- }* F# P- C( z 45 0.15105 0.06975 0.02473 0 0.00336 y, f* O6 k& e& z2 c! n, ^
60 0.13763 0.07397 0.02615 0 0.00428
/ r% {" L& h) E- s 90 0.08115 0.07877 0.07485 0 0.01405
5 f3 p5 E) M2 v2 u Z! A! ^- R6 W 120 0.0656 0.07397 0.07885 0.00573 0.02143
" u$ X; `( K6 J! @ 180 0.04488 0.0682 0.07135 0.0091 0.036233 [* A: ^3 D! Q- S! w
240 0.03653 0.06488 0.08945 0.01828 0.05452$ v* p. M( i3 q- B$ ?5 D8 u
300 0.02738 0.05448 0.09098 0.0227 0.0597" r2 s& S% O7 h9 ]: o
360 0.01855 0.04125 0.09363 0.0239 0.06495];/ h' S. Q. E& T: d1 i9 @" Z
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值8 o/ e; p# S0 e4 }' W5 Z7 _
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
1 T( ]" t3 D+ [& x: @- Lub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
* d( n2 e0 E2 k l" K5 Vx0 = [0.25 0 0 0 0];' U4 @4 s- [; B6 @9 R
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
0 `$ B% w/ A" X0 S% warning off
/ V/ w, e& N/ s' a+ C% 使用函数 ()进行参数估计
) M1 d, m1 Q- i/ ~[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
' D- w4 e4 D1 x' n2 w3 Qfprintf('\n使用函数fmincon()估计得到的参数值为:\n')
4 v! x% ~7 p6 c+ c; B+ Q- h+ v* hfprintf('\tk1 = %.11f\n',k(1))" s U1 G2 w: [: [ m. @) Z
fprintf('\tk2 = %.11f\n',k(2))
9 Q' P- ^& S8 H/ u3 M. H5 R! xfprintf('\tk3 = %.11f\n',k(3))
, h+ s# q: _ p! ~fprintf('\tk4 = %.11f\n',k(4))
8 ~/ j& A6 [' Q2 Cfprintf('\tk5 = %.11f\n',k(5))
) T$ ~# u. G) K) ?# ]$ A8 ^fprintf('\tk6 = %.11f\n',k(6))
4 y% c X: L* B% h$ xfprintf('\tk7 = %.11f\n',k(7))
3 o/ x% }" P/ }fprintf('\tk8 = %.11f\n',k(8))
- y/ _6 Q& U9 I$ ufprintf('\tk9 = %.11f\n',k(9))' z" e! l0 K* w4 i# Q
fprintf('\tk10 = %.11f\n',k(10))
6 k* q- L( t9 ?% k* o6 a( {fprintf(' The sum of the squares is: %.1e\n\n',fval)
3 o" s0 l4 B4 a# Jk_fm= k;0 S& |$ t3 u- E+ I& S7 H
% warning off3 G1 J& e1 x) X( B, ^
% 使用函数lsqnonlin()进行参数估计
0 S2 [9 T; L w. \' J" ^[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...2 F# X1 J2 u" \# e* _
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
' |. S! d8 U/ } [0 M5 d ^& lci = nlparci(k,residual,jacobian);0 y' h9 ~( n( R1 W4 \4 F+ r6 }! n
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
. V e) z3 I6 `, n7 Pfprintf('\tk1 = %.11f\n',k(1))
3 }+ R( ^1 N9 j+ }: z8 W" Hfprintf('\tk2 = %.11f\n',k(2))0 { J/ ?& n2 c/ W1 l3 S5 u
fprintf('\tk3 = %.11f\n',k(3))$ f' b. S D8 P/ |1 U. u) p! F# |
fprintf('\tk4 = %.11f\n',k(4))+ H* z1 t3 t2 m) v2 I6 Z: u
fprintf('\tk5 = %.11f\n',k(5))7 m0 w" l) O" A i
fprintf('\tk6 = %.11f\n',k(6))
9 K( X) z# ^( Y: ^5 [fprintf('\tk7 = %.11f\n',k(7))
" o3 @# b' T( p2 j9 |( \% K* }fprintf('\tk8 = %.11f\n',k(8))
4 N7 [. _6 f- i n% q* ` V9 e# |fprintf('\tk9 = %.11f\n',k(9))6 P+ v1 \$ x0 u, L5 {! i: {8 \4 t
fprintf('\tk10 = %.11f\n',k(10))3 o( |, p' c0 n
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
6 }1 |" y- Z- H0 I# n4 ak_ls = k;0 \: y: F0 n8 ?" _' \" {
output' ~/ Z/ K" d- |
warning off
1 j: Z Q0 J- R/ f3 ^3 f9 B% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
0 N7 G; I$ `, g; f9 o- I) j# x% `k0 = k_fm;5 _* A& M; ?8 C# T1 r3 \
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ..." @3 D. e, W: U
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
. G5 L& ?6 \: T! n) v+ }ci = nlparci(k,residual,jacobian);
3 h2 ]& X3 X9 E8 _% V% }, B# bfprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
- H% c7 K% h: f# N0 b }9 nfprintf('\tk1 = %.11f\n',k(1))
1 ]- M' i. X; R& q1 ?; ifprintf('\tk2 = %.11f\n',k(2))
* Z0 M1 e& ?" x' x4 M+ J# `fprintf('\tk3 = %.11f\n',k(3))
) Z. b! t( H+ |fprintf('\tk4 = %.11f\n',k(4))( Q% \7 ?. U7 H1 }
fprintf('\tk5 = %.11f\n',k(5))
: \5 h( M: E& R% L# Kfprintf('\tk6 = %.11f\n',k(6))$ m, i! X6 A; }: m2 A! [
fprintf('\tk7 = %.11f\n',k(7)); P6 b! p* c2 h: a* Y, K8 d
fprintf('\tk8 = %.11f\n',k(8))
& p6 g* b, Y* e yfprintf('\tk9 = %.11f\n',k(9))
7 B9 _( Q5 f- dfprintf('\tk10 = %.11f\n',k(10))
) ~4 M0 m/ A8 A: f- B% t- xfprintf(' The sum of the squares is: %.1e\n\n',resnorm)1 J8 _9 R' H& e# j1 ~
k_fmls = k;
y2 W9 E/ ]8 V; L3 s2 t3 soutput& i N& X' r% e6 |
tspan = [0 15 30 45 60 90 120 180 240 300 360];
- }+ ^; M8 n. ][t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
% V* s6 I7 a5 R' E# Vfigure;
8 h4 ]; |2 }$ p x6 z2 ?2 i) D7 C( Mplot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')9 u* z# I2 H: y; `/ F7 t7 C
figure;plot(t,x(:,2:5));0 }; U' w' |: ?0 r2 v
p=x(:,1:5)
8 \" W+ ?* J/ {- o* Ahold on* F6 E! D: ^, q) O9 N! X1 i. f
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
# `2 u6 ^! t2 U% q7 L3 Q2 T {0 @- Q
" e$ M5 c2 ~# h/ `! B6 N- ~% D( B8 q8 |, Z1 p/ F
function f = ObjFunc7LNL(k,x0,yexp)
+ Q- x5 K+ ]2 a2 ~tspan = [0 15 30 45 60 90 120 180 240 300 360];# {8 J7 _ p* z3 `# {
[t, x] = ode45(@KineticEqs,tspan,x0,[],k); ; D% o' ?/ |7 O) g2 ? J
y(:,2) = x(:,1);4 C( P+ E: A; X2 j- ]
y(:,3:6) = x(:,2:5);% P/ w* w3 D9 s( E! n0 a# F/ w- |
f1 = y(:,2) - yexp(:,2);
. B1 K, R. w* rf2 = y(:,3) - yexp(:,3);
; N3 K( u( \! \* L0 g$ If3 = y(:,4) - yexp(:,4);, b3 D# a) u0 s: F' d
f4 = y(:,5) - yexp(:,5);7 \4 d: f$ z, M6 U
f5 = y(:,6) - yexp(:,6);- _9 i2 e6 Z x! j2 |+ M
f = [f1; f2; f3; f4; f5];7 P i( U. ]7 D0 r( o p% z
$ q! ?2 T! ?3 l+ g2 W/ @$ Z5 h: `# V* `8 ^& g/ S R7 k: q+ \8 c
, O" r: m/ X5 u( u( `$ `function f = ObjFunc7Fmincon(k,x0,yexp) l( D+ @% p& S% X0 B7 V
tspan = [0 15 30 45 60 90 120 180 240 300 360];
3 G7 a6 p' D P& ^' v8 ^( i1 j% p[t x] = ode45(@KineticEqs,tspan,x0,[],k); 4 f% d+ Y' S5 N/ I* |* E
y(:,2) = x(:,1);
( y7 I+ L$ A$ E8 G: q3 r( Y, Ny(:,3:6) = x(:,2:5);
) I9 W4 G/ }$ n# t: bf = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...( a+ k9 W @. K+ |7 K; T6 w7 z
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ..." v4 l) ?0 S( J3 K# X
+ sum((y(:,6)-yexp(:,6)).^2) ;
6 N: ^7 }2 |! e% o) o- g R& v% D8 w6 r1 n' U
; T* I _1 u8 V+ d& k/ A
' @; G3 J4 f- D5 B
/ _% L; @8 g# G9 x/ Vfunction dxdt = KineticEqs(t,x,k), m4 a0 {4 j6 A
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);; |- X) V! }3 U" h, [5 S/ A
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);) h2 r) M) S- a1 \3 ` S
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);' j: t1 `( A% o4 l
dLadt = k(7)*x(5);0 S/ k! \) ]9 u/ H7 W; t, v9 K4 I
dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);4 S* a9 K; e% |
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];. U: E8 ?, I) I* q% _* n
8 M$ d! f4 O* ~ v
' i+ D9 V! y2 A3 R
|
zan
|