- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
|---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit0 r# Q1 }. Z6 v8 w6 b
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k48 R8 F; ]# g" r; w/ w
% k6->k6 k7->k74 @4 C2 N) n# ~. J6 z
% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);3 f; O3 c% J2 U( e3 H- s8 f
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
+ C5 O. a: _( f T7 U% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
! C% t; n$ k: E, N& C% dLadt = k(7)*C(Hmf);
& a3 d" B2 q: v3 H' s* ]& u%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);- B. B2 \: G. a
clear all' m. B0 i6 M3 i4 f; R/ Z& y/ v! v
clc/ G" p! j/ D7 Y( l
format long
# _. u; e( W: q) v& L4 F3 r& |% M4 y% t/min Glc Fru Fa La HMF/ mol/L 6 C: C# L+ E4 @& p- }! a8 ~
Kinetics=[0 0.25 0 0 0 0
* g$ i( ?5 ]7 i- n8 h 15 0.2319 0.01257 0.0048 0 2.50E-04( _ Z, t7 [3 i0 m5 G& o2 a! `! E
30 0.19345 0.027 0.00868 0 7.00E-04! H7 R% Q z7 O! |* Z6 N
45 0.15105 0.06975 0.02473 0 0.0033% P# G5 h; V/ n7 N$ k9 V
60 0.13763 0.07397 0.02615 0 0.00428
' w# I# L; f+ s/ a. m8 Z1 ] 90 0.08115 0.07877 0.07485 0 0.01405
5 n" M \1 X. E6 b. k 120 0.0656 0.07397 0.07885 0.00573 0.02143
- F: k5 {2 [1 L; p 180 0.04488 0.0682 0.07135 0.0091 0.03623. i+ @) G' k9 F& N
240 0.03653 0.06488 0.08945 0.01828 0.05452: U" P4 O( y$ X9 I8 A
300 0.02738 0.05448 0.09098 0.0227 0.0597 u( L' I# z4 T' E
360 0.01855 0.04125 0.09363 0.0239 0.06495];/ C/ r; m6 h* y; N& }& ?6 P
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值$ h* p9 s/ @6 y% G- Z- R
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
; g1 Y* g2 G, \3 j6 R# Zub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
9 k2 Q% k. l' }+ i( C3 o) R9 v' K0 e Yx0 = [0.25 0 0 0 0];3 h# j, d( ]) U1 F# w5 ?
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]! \) F; g1 n/ ?7 H0 b, A
% warning off
: A; F" y* N0 J" q$ U4 h( {' k% 使用函数 ()进行参数估计
' n9 [7 c! W9 J$ R, @[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
, M+ X3 e6 o5 H+ l4 L+ S1 L8 ?fprintf('\n使用函数fmincon()估计得到的参数值为:\n')
) Y/ t2 E( z0 E4 ^: B5 l xfprintf('\tk1 = %.11f\n',k(1)), U2 g4 S7 Q; b8 z0 l3 v
fprintf('\tk2 = %.11f\n',k(2))7 h* \) h N* S, n
fprintf('\tk3 = %.11f\n',k(3)), @! u3 ~# X& |% n( p2 ^) A3 x
fprintf('\tk4 = %.11f\n',k(4))
9 e6 K6 {9 w3 g9 I( F; b& Q# z2 f( v( @; Hfprintf('\tk5 = %.11f\n',k(5)): f6 B- T. }& @+ L/ V
fprintf('\tk6 = %.11f\n',k(6))
. O* t8 j3 N1 N- Tfprintf('\tk7 = %.11f\n',k(7))( C/ N8 A% p! P) m) k& P
fprintf('\tk8 = %.11f\n',k(8))
! u! H3 b% Y( a/ r3 I2 |+ b% D, v! Ffprintf('\tk9 = %.11f\n',k(9))2 j$ L+ }" w0 y3 Q) J
fprintf('\tk10 = %.11f\n',k(10))6 V2 @2 ?: Q6 c7 H _
fprintf(' The sum of the squares is: %.1e\n\n',fval)
. T4 R4 | j# Z; ^- ]1 O5 [k_fm= k;
& C% S2 A a8 x4 p1 H% warning off1 e, W$ `& ^% D( p3 B; ]* O
% 使用函数lsqnonlin()进行参数估计
+ p: _1 ~% K1 \6 g. t; y5 B0 \+ s[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
! c% L* M# x+ g3 ^* V. B- f5 S* [3 J lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
1 u2 V% g. i4 o* |ci = nlparci(k,residual,jacobian);
1 v8 Y6 e& r9 i( E" s8 Lfprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n') ]/ Z# ?% R, F7 I# w; x% R
fprintf('\tk1 = %.11f\n',k(1))
, ^+ G; _* f9 i) v# `' F, Cfprintf('\tk2 = %.11f\n',k(2))
# c+ D* d8 {# t" yfprintf('\tk3 = %.11f\n',k(3))- ~ |6 `* i9 A) S" M% ^5 k
fprintf('\tk4 = %.11f\n',k(4))
' Z9 o0 G; |( f, d( X6 h+ gfprintf('\tk5 = %.11f\n',k(5))
' R* o, w" g# E H6 v/ t1 @( F! ifprintf('\tk6 = %.11f\n',k(6)) u! W1 R; o O' A; a
fprintf('\tk7 = %.11f\n',k(7))1 O/ t" y* A; Z7 s
fprintf('\tk8 = %.11f\n',k(8))
/ n& ~* ?% H( z$ Y9 N6 F8 ]7 ufprintf('\tk9 = %.11f\n',k(9))
7 ]" G$ J0 ]+ N2 s% N" K7 D' tfprintf('\tk10 = %.11f\n',k(10))% y6 Q" v' o" S" W+ V& K1 G
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)( U4 x7 i7 v9 [% V7 d9 |, i
k_ls = k;- T& d3 j& C: h$ m3 [( I% q
output/ S F7 E1 {( o7 `
warning off
6 b9 H# ^% Q u* e6 r% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
$ R' Z) R% K: ik0 = k_fm;$ U; E' l: ]1 n6 z3 }
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...8 X1 G* J7 Y, k \* d
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); 4 W# {- o( {. B+ U% j- T' E# Y ]
ci = nlparci(k,residual,jacobian);! K0 g' K3 A. @. p5 J1 k
fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
- F; t# e' Y+ q8 ?, n+ Yfprintf('\tk1 = %.11f\n',k(1))
, n% K0 z) K6 A2 @3 Afprintf('\tk2 = %.11f\n',k(2))) Q" j: k7 r) M; G' N* v1 M: D, ]
fprintf('\tk3 = %.11f\n',k(3))' J) [" h$ j3 r4 P
fprintf('\tk4 = %.11f\n',k(4))+ [' s3 W: d% Z. o, o
fprintf('\tk5 = %.11f\n',k(5))
& k3 P# w6 N7 D4 ]: Qfprintf('\tk6 = %.11f\n',k(6))2 S7 U, o2 _* M
fprintf('\tk7 = %.11f\n',k(7))
4 n' d5 A$ S1 e, kfprintf('\tk8 = %.11f\n',k(8))6 a8 p+ R% y3 T9 C1 ?& U, Y
fprintf('\tk9 = %.11f\n',k(9))
/ `$ B0 `$ b6 Y& lfprintf('\tk10 = %.11f\n',k(10))
9 z! c, }" e" |fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
. S6 b, A3 f3 Yk_fmls = k;* ^ T. U( g' s: N
output0 I5 U5 @4 A8 G) P
tspan = [0 15 30 45 60 90 120 180 240 300 360];
" q! D$ h3 H J) B3 i[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls); 2 w5 e6 Y7 T5 ^0 u. o
figure;
7 y4 r5 T/ u+ S6 Q- s/ lplot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')
4 E: s& a! ?: q4 w+ q; B0 nfigure;plot(t,x(:,2:5));2 R# ?8 c' [5 Y, l
p=x(:,1:5)
, `2 _1 Q5 b# K/ v7 l3 L9 {hold on& p" h% Y4 {, `5 {
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')9 ^8 ?/ R* S4 t1 r! g7 Z
: ]- q' ^) E0 h& y
4 ?* e! Y. A; }
0 M$ O% F9 `- o' v9 f# |4 u
function f = ObjFunc7LNL(k,x0,yexp)
& U' E s1 r, ^2 g) p2 y N9 Xtspan = [0 15 30 45 60 90 120 180 240 300 360];9 _; q' N0 K( W6 M+ T* k8 s
[t, x] = ode45(@KineticEqs,tspan,x0,[],k); 5 [/ k; X5 ~) B0 w' `" @
y(:,2) = x(:,1);
4 H7 _9 f! O7 y2 D, Gy(:,3:6) = x(:,2:5);4 U4 N) n9 ~& v. v
f1 = y(:,2) - yexp(:,2);
{( S: V2 Y2 }* [& K8 Bf2 = y(:,3) - yexp(:,3);3 w1 J/ Z; Y0 s4 p; b- d
f3 = y(:,4) - yexp(:,4);" ^0 [8 {4 ^. o
f4 = y(:,5) - yexp(:,5);& j- o! B; R/ P- A
f5 = y(:,6) - yexp(:,6);
1 o- Y, U% {/ ^f = [f1; f2; f3; f4; f5];1 `9 H' J9 s3 K' o4 g$ }6 a7 w! P
* S/ q2 ^( N) r& p/ T- p8 G
$ R. C, I% b. m0 J5 g
0 D( U4 r% y( n2 x t, n- r
function f = ObjFunc7Fmincon(k,x0,yexp)
4 G" h! L- l6 k; Ltspan = [0 15 30 45 60 90 120 180 240 300 360];, A: X! a0 N) A
[t x] = ode45(@KineticEqs,tspan,x0,[],k);
a2 ~+ d3 F# my(:,2) = x(:,1);
$ f) \5 H% K% }) O8 O$ [0 by(:,3:6) = x(:,2:5);' x; c0 s9 y6 V9 E; s$ K5 m
f = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...
5 w8 z* |' H5 h, G4 [ + sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
8 Q" d' j1 R: D$ s* H9 ? + sum((y(:,6)-yexp(:,6)).^2) ;
! q8 Q' ]' v% B n6 @4 |( B
- {; z8 A2 R3 H; a6 Y7 \- q: l9 m7 ~7 h) r2 t4 g0 b% e7 Q
- ?$ L' E' d9 k; d; o, x P
& w+ X, Y: Y( _2 a' t0 c" {
function dxdt = KineticEqs(t,x,k)" N* w$ {4 Q$ s% p1 E- P0 i
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);6 B n+ Z n* H- |! }
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
/ q. g" f1 I9 R5 O# j/ \dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);( M9 S' b V8 e8 }
dLadt = k(7)*x(5);
# C' G# D' l7 j6 b( N k# EdHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);% H( Z5 |- O( K2 c8 m9 i( X6 W0 T
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
r, L( `$ S# y" z' ~( d. t& |: }8 o% |! `" @% e' p
1 p j. k1 q9 p/ o( A0 i/ p$ |
|
zan
|