- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit
1 f( Z: W$ N q% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4
( L) e4 O; F" j0 i2 n) V% k6->k6 k7->k7! }' N6 v6 K* s, f
% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);1 U8 p8 K1 F* y+ _( |
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);' h- x2 S: ~! \0 w5 ]1 e1 E
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
- U6 J5 D2 G9 m% dLadt = k(7)*C(Hmf);2 c" {6 t0 Y* |6 q
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);! ?+ Y- G+ F3 N1 y, e1 E2 O3 w
clear all
8 h2 g3 _" n4 Xclc) L; y% }5 \# n, }5 O. N/ W8 @8 Z4 N
format long
$ Z% {& U. I- `. E3 ?2 G' ]5 z% t/min Glc Fru Fa La HMF/ mol/L 8 | o% g1 l9 ^) H7 x
Kinetics=[0 0.25 0 0 0 0
. m7 I9 _: R; |( f 15 0.2319 0.01257 0.0048 0 2.50E-049 e9 z+ } y7 y6 i, \0 T
30 0.19345 0.027 0.00868 0 7.00E-04
% b' H8 n( w" {) \( b2 z0 J% Z 45 0.15105 0.06975 0.02473 0 0.0033
5 X) D. u/ k7 d$ S, B 60 0.13763 0.07397 0.02615 0 0.00428
6 R- |3 l" a) n5 L& N/ G& C' Q 90 0.08115 0.07877 0.07485 0 0.01405* v8 T+ X; I4 w0 u, e/ I; r
120 0.0656 0.07397 0.07885 0.00573 0.021436 s1 T4 f- e3 D
180 0.04488 0.0682 0.07135 0.0091 0.03623
+ S3 C! O) X+ V, W. l 240 0.03653 0.06488 0.08945 0.01828 0.054526 p* d; O# a; e
300 0.02738 0.05448 0.09098 0.0227 0.0597
6 ]# k8 {$ H5 K8 _+ h9 S 360 0.01855 0.04125 0.09363 0.0239 0.06495];
3 `) A2 Z2 r$ A1 `0 p# D4 N; Xk0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值& N* ]& ^- c5 w. I4 E6 `1 _
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限! t) t( x7 s3 A0 k; P
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
) C6 K# _) ]- J4 P8 |x0 = [0.25 0 0 0 0];! s$ S6 w8 u3 u; C3 ]8 [4 u' I
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
/ K, V5 }+ D' J' U4 ]3 `4 Q% warning off
# I" W) M+ H7 }* N% Q1 Y% 使用函数 ()进行参数估计* i* B5 `7 {- V# l% Z2 [
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
6 x$ T7 w$ ]) c5 lfprintf('\n使用函数fmincon()估计得到的参数值为:\n')! m' _; L) _1 y7 y2 @5 u
fprintf('\tk1 = %.11f\n',k(1))( l+ [1 X, v9 @5 e$ J6 ^7 p# {- i0 f
fprintf('\tk2 = %.11f\n',k(2))
9 g+ Q# g8 T' ?9 K8 h d1 n6 a$ [1 Rfprintf('\tk3 = %.11f\n',k(3))
. j1 P" Q' Z' afprintf('\tk4 = %.11f\n',k(4))* P; f6 f5 e" H5 `0 {& N% m
fprintf('\tk5 = %.11f\n',k(5))
# Z, Y8 ]8 x7 U2 o+ nfprintf('\tk6 = %.11f\n',k(6))
' Q+ s* _ |/ W" M+ bfprintf('\tk7 = %.11f\n',k(7))
, ~& T& e# A6 ~7 }' ~fprintf('\tk8 = %.11f\n',k(8))) [! K, D% z, L! ?! g: u
fprintf('\tk9 = %.11f\n',k(9))
) y1 X# d4 k% t, ifprintf('\tk10 = %.11f\n',k(10))
5 F+ L' U, C# ]3 A$ C5 Bfprintf(' The sum of the squares is: %.1e\n\n',fval)# y( w& L4 k' ^( x5 @5 q) U! }
k_fm= k;
{6 m c' H4 T/ ^( x. Q. j% warning off
# J2 h, O6 W2 g. t# x% 使用函数lsqnonlin()进行参数估计
- c S2 z! v1 K3 l[k,resnorm,residual,exitflag,output,lambda,jacobian] = .../ e" j/ `" q" q
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); ' N' b) T) ?! C; P/ }
ci = nlparci(k,residual,jacobian);
% I) j' b3 l: G3 j' Rfprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
' K1 G3 V- @0 y# ], O r- Ffprintf('\tk1 = %.11f\n',k(1))8 i1 z0 L2 T* {0 I$ A; m. G
fprintf('\tk2 = %.11f\n',k(2))
& Z8 A" D+ V. E- kfprintf('\tk3 = %.11f\n',k(3))2 B: F) C p& v1 W
fprintf('\tk4 = %.11f\n',k(4))
' R2 E; e: t: O4 `fprintf('\tk5 = %.11f\n',k(5))# I; u+ c$ C% }! e$ P# S+ ~* P
fprintf('\tk6 = %.11f\n',k(6))( ?+ B0 O( g% D, w6 S
fprintf('\tk7 = %.11f\n',k(7))
% {7 k @) B% v$ n! nfprintf('\tk8 = %.11f\n',k(8))3 G& H1 P# C, b4 g3 H* ]$ m; `
fprintf('\tk9 = %.11f\n',k(9))( g3 y7 @6 G0 u- G5 L" _/ U! }8 W
fprintf('\tk10 = %.11f\n',k(10))
1 a# W& F+ `% \6 _fprintf(' The sum of the squares is: %.1e\n\n',resnorm)' o2 j5 o/ I/ t: {' p
k_ls = k;
! v( s5 A" }! k$ [output( o9 P* E ?4 e* @) S& J
warning off2 @( @3 T/ t) x5 }$ V9 {( W
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计8 D& P* x: z5 T- `4 v; q* J. c
k0 = k_fm;
1 ]6 ^' X7 f$ i2 k5 q, D[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
6 K- Z0 U% s7 i9 ]# Y lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); 0 M" h# H2 Z6 J) S/ s( ^/ ^ s% X. r
ci = nlparci(k,residual,jacobian);
- E4 x: l' [5 @: T: A; h6 `9 h! @fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')5 S+ t3 q @9 e3 K7 ]. e
fprintf('\tk1 = %.11f\n',k(1))
: C' l# m9 v+ Pfprintf('\tk2 = %.11f\n',k(2)), M( q) }& N3 ~4 G
fprintf('\tk3 = %.11f\n',k(3))
- }1 u# T' U" q4 ^* y; Pfprintf('\tk4 = %.11f\n',k(4))
& O! y2 R( D5 `) N) ~. Q. Pfprintf('\tk5 = %.11f\n',k(5))/ h3 ?6 m% R. }2 h5 q8 S
fprintf('\tk6 = %.11f\n',k(6))
# y4 B: Y3 g Q* G7 W, A3 I* g" e/ jfprintf('\tk7 = %.11f\n',k(7))4 ~% g n, o* `2 u# @5 l
fprintf('\tk8 = %.11f\n',k(8))5 T* n2 Z# ]' i/ G' s9 L
fprintf('\tk9 = %.11f\n',k(9))
! }" U6 i7 d4 P4 K$ I; c3 Bfprintf('\tk10 = %.11f\n',k(10))
. U$ m+ t' D4 C# P cfprintf(' The sum of the squares is: %.1e\n\n',resnorm)6 l$ O$ ?9 S0 q0 |
k_fmls = k;, \. R* z4 x! j) e5 c6 q* \7 }+ M1 X
output
8 \9 i& h2 f; [% @0 y8 {' j. u0 Ntspan = [0 15 30 45 60 90 120 180 240 300 360];1 @+ e) @0 f5 `7 w) y+ e
[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
, d+ [) F6 c6 B$ wfigure;! M" o: v& N8 X3 W3 `: L8 [
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')9 U$ W' g! H, _+ w! w# ~
figure;plot(t,x(:,2:5));; W# }* `3 Q9 }. {$ c8 W G7 D
p=x(:,1:5)
7 }, X, l. N% i9 ]2 `3 C5 M& `" Z8 ]' fhold on; Q) m1 c! A0 ~4 p! D
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
2 L' v' ]) b3 P& p) R7 q( Z* F# m; b2 i9 K
6 u% N0 n& k8 t' D! ?+ ]. u" R5 b; y' q
; q" ~( v) L; U3 gfunction f = ObjFunc7LNL(k,x0,yexp)" I1 i3 K0 g: `
tspan = [0 15 30 45 60 90 120 180 240 300 360];( b0 g& e) ]* ]. G& p
[t, x] = ode45(@KineticEqs,tspan,x0,[],k); + d/ ^* Q/ n+ u/ N; O) [
y(:,2) = x(:,1);
; b4 ~* c2 G, r) `y(:,3:6) = x(:,2:5);
& z2 f/ R( L6 |1 @+ J& A' ff1 = y(:,2) - yexp(:,2);
5 G5 m4 o1 G: D- Ff2 = y(:,3) - yexp(:,3);
# S4 d, ^8 X7 P& m3 Wf3 = y(:,4) - yexp(:,4);7 n" H# D; q, {
f4 = y(:,5) - yexp(:,5);" k( N/ J7 C3 d6 ]+ `
f5 = y(:,6) - yexp(:,6);
. c7 k7 K2 W+ I: E8 Nf = [f1; f2; f3; f4; f5];
# _1 `" z2 r( g+ e( e ^9 j. F8 Z4 \1 e F! S. L9 }
/ x! ]! U% K# n+ a/ x
# n9 r' L6 d% o$ `
function f = ObjFunc7Fmincon(k,x0,yexp)
- q& q) H1 o$ `: s+ L) W6 otspan = [0 15 30 45 60 90 120 180 240 300 360];6 V0 r) {! a9 r9 D/ }) C F5 N
[t x] = ode45(@KineticEqs,tspan,x0,[],k);
/ V( [8 u8 w, t9 U5 Ry(:,2) = x(:,1);
1 R! _% ~7 J% |9 L- qy(:,3:6) = x(:,2:5);
6 f2 |' T% ?- h. i& x, |2 Af = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...! S) M/ Y# K, F3 n$ a
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
' e! s& V& q" v7 r) n, n* l# K + sum((y(:,6)-yexp(:,6)).^2) ;; v R% b }* h, F" r7 m* U
* g3 U' m. I$ x7 B6 W6 J( N, ]1 W
% f% y" K) h* e
" v, w. h0 p6 a7 V3 G. C, c
( c5 ~9 c# Y: L& b& F! a, Ufunction dxdt = KineticEqs(t,x,k)
* G; R4 |0 o0 [dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
, d0 n) i% {$ m0 qdFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
5 N/ S( _# L3 [dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
+ G+ }* P5 ^ ]) b; b# E2 @dLadt = k(7)*x(5);: V( l$ N0 [0 F- t4 o S: w3 \
dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);& e% I {4 ^" G
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
) ~: K) b1 N- Y y5 d0 @
* S& n4 |8 [( Y4 {+ D& Z' w7 F8 w4 {. v( w5 L
|
zan
|