- 在线时间
- 5 小时
- 最后登录
- 2016-2-2
- 注册时间
- 2010-4-27
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 53 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 34
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 36
- 主题
- 0
- 精华
- 0
- 分享
- 0
- 好友
- 1
升级   30.53% 该用户从未签到
|
谢谢1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法). @. J/ i+ K( k; b) b4 o9 ~) R& O! c
7 O. I5 ^5 u: e( b- n8 |/ ?* F1 H; o& N# I) O+ `; `; _8 w
2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)( h6 b; Z1 `; o
2 ?0 `' b1 h: G8 |5 M! g& U. s# h, A9 p+ ?
1 a3 F: {7 U6 J3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)# [( S0 n8 L! M9 \1 P$ f6 A s
. E. P+ K; T7 {" K: b$ H2 j$ w4 K* g! \1 Z/ t0 y; p( t& c/ [
! Q3 i% r; `7 ~0 g4 ] i2 K0 R0 z4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)( k% _+ X, T: X
: B# f0 w9 h0 c! |3 E1 I* c0 B4 B" R1 O( u4 V w% j2 ?3 O7 ~1 F: J2 ?
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) `/ m/ f( d& M* p
2 t0 P9 V+ q( Z5 N" ^2 Z; Z( D. i( e) V
S1 L8 D9 `4 Z* }9 ]1 p6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)
8 S8 O& [3 Y) _; w! j9 z: m5 e; b P6 y# a |+ z* v0 z) p- r; o
7 Q+ C O5 J/ q8 l8 F7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)- v w/ h" A6 m: Y4 `- ~+ t
, f, w F5 J% ~( L" ?3 v3 Y- \2 ]1 w8 Q$ z$ g7 z" d3 b+ e
: d/ ], H8 T! n/ I, D5 t8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)8 T6 r# j `& U2 o" b D: V
, b; v8 v: y; T& Z4 o. l1 @: `9 S' M3 r/ ?. _8 J: c5 f9 U, T, h, ?
9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)/ x1 s) c! c; Q% O9 i& C; l1 Y, o1 ~' {/ A# G2 J$ R
5 Y6 c. A7 a2 ^5 M- i) l6 c4 ^$ o! L. Y9 X3 _( T; U
10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理 |
|