QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3242|回复: 0
打印 上一主题 下一主题

神奇的“无8数”

[复制链接]
字体大小: 正常 放大
韩冰        

823

主题

3

听众

4048

积分

我的地盘我做主

该用户从未签到

发帖功臣 元老勋章

跳转到指定楼层
1#
发表于 2004-11-28 10:53 |只看该作者 |倒序浏览
|招呼Ta 关注Ta

神奇的“无8数” ( g+ D6 k0 p$ W* l- b' m! u0 s

赵建华(河北省迁安市小王庄小学) ! o& c1 A! w! E" }" l" O3 Y( k

小朋友,你知道吗?在数学王国里,有一位神奇的主人,它是由1、2、3、4、5、6、7、9八个数字组成的一个八位数——12345679。因为它没有数字“8”,所以,我们都管它叫“无8数”。 ! z# V, Y7 O9 `/ j" z) V8 f

“无8数”虽然是由普通的八个数字组成的,但是它具有许多奇特的功能。它与几组性质相同的数相乘,会产生意想不到的结果。你不信?就让它给你展示一下吧! 3 ^5 a% O1 N" N0 A9 O j

它若是与9、18、27、36、45、54、63、72、81(9的倍数)相乘,结果会由清一色的数字组成。 * S. r ?# D9 D5 l

12345679×9=111111111 2 U8 {: p; N' z' l/ v

12345679×18=222222222 $ o: O6 Y: ~ J9 R9 \6 }+ V5 O

12345679×27=333333333 ( ?2 ~* P$ g' K' R

…… % T/ t, E; Z5 q3 Q. q, |) l

12345679×81=999999999 8 V t$ e+ X4 W4 N8 `9 ? ^& P

“无8数”不仅能乘出清一色的积,而且还能与12、15、21、24……(3的倍数,其中9的倍数除外)相乘,得出由3个数字组成的“三位一体”这种特殊的结果: 9 z3 z* \! f# Y

12345679×12=148148148 , g! ~, b( E* s9 L

12345679×15=185185185 ' j: p. g0 g) v# v+ [) C d' G

12345679×21=259259259 # Q3 ^- Y* m5 g. ?# N! C$ u1 K

12345679×24=296296296 , v6 b3 b6 T; N' o" F9 w* b

…… ) G2 P' a" m: j6 i% s* |7 J; M8 M

怎么样?小朋友,“无8数”够神奇的吧!这还不够,还有更精彩的呢,它若是与10、11、13、14、16、17相乘,乘得的积会让8、7、5、4、2、1轮流休息(3、6、9是3的倍数,就轮不到它们休息了)。 4 D. o/ K. T* Q! N5 |7 t% _

12345679×10=123456790(数字“8”休息) 3 Y# D. y1 ?9 H% E( P B) J

12345679×11=135802469(数字“7”休息) ! K0 @+ z4 H1 w1 U

12345679×13=160493827(数字“5”休息) ; V# ?/ W" ~5 g

12345679×14=172839506(数字“4”休息) ! S, m/ |4 H8 r1 J/ u1 r5 X

12345679×16=197530864(数字“2”休息) 7 o8 T6 S* z2 n1 O/ P5 J* S

12345679×17=209876543(数字“1”休息) + U. b2 ~8 d t% F1 d

怎么样?“无8数”够有人情味了吧! * N$ }$ o" T3 U4 }) e

看了这个结果后,小朋友一定会说:“无8数,真奇妙!”然而,它与10、19、28、37、46、55、64、73相乘,积会让1、2、3、4、5、6、7、9八个数字轮流做开路先锋,更是其乐无穷! 4 a. A7 `$ V+ I4 m

12345679×10=123456790 9 A3 j, S5 A" K& N

12345679×19=234567901 " q' k8 K- i: {8 o- a0 W

12345679×28=345679012 5 s1 S5 O: J$ f- \) L

12345679×37=456790123 6 }& J" ]5 P+ Z% T* S: A( p0 j O

12345679×46=567901234 ( V- m _" _( }

12345679×55=679012345 7 B* C5 d9 d7 h* K3 B2 q4 H. w

12345679×64=790123456 8 L7 t( d# u7 |& e5 J7 s% R

12345679×73=901234567 * M$ i! v) V9 G* Y6 w7 N

这个神奇的“无8数”与循环小数有关。请看 - P; h1 f5 i' L* t$ G9 P6 R. ?3 l

% h9 @ L' N2 a

这个“无8数”还有不少有趣的性质,随着人们对“无8数”研究的深入,这种有趣的性质会越来越多地被发现。 2 b I8 j6 p& i$ k: N; p8 F

看了“无8数”的展示,小朋友们有什么感谢呢?在神奇的数学王国里,有无数的“宝藏”等待着我们去挖掘。只要我们多学习,多积累,就一定能探索出更多的奥秘。

zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-11-12 16:12 , Processed in 4.993986 second(s), 51 queries .

回顶部