! ?6 D. M6 |7 D0 v' Q1 I7 ~9 M 他用A、D分别表示两个小岛,B、C分别表示河的两岸,用联结两点的线表示连通两岛和两岸的桥,得到由七条线和四个接点组成的图形。于是前面的七桥问题就变成了一笔画过七条线(不重复)的问题。现在我们来分析用笔画图的过程:如果从某点出发,一笔画出某个图形,到某点终止,那么中间每经过一点,总有画进那点去的一条线和从那点画出来的另一条线,所以除了起点和终点外,这个图形的每一个点都应该和偶数条线相连,如果起点和终点重合,则这个点也应该和偶数条线相连。" i; c# V) u3 F* O$ x$ q2 U' z' d
! w6 Z/ ?5 S3 s4 f 然而四个点都是和三条(B、C、D各点)和五条(A点)线相连,都是奇数条线,故当然不可能一笔画出,即使不要求回到起点,也不可能一笔画出。 % Z* u' q3 m; S5 ~5 X/ t8 D: ~+ o" H
由此可以断定,不管要求不要求回到起点,不重复地一次走遍这七座桥总是不可能的。. g. t( y @: e U9 _
6 J6 O' h6 F G& F x5 z& `$ z
七桥问题实质是一笔画问题,也是一个几何问题,但该问题中线条的长短曲直都无关紧要,要紧的只是点线之间的相关位置或互相联结的情况,故欧拉把这类几何问题的研究叫做位置几何学,欧拉对一笔画问题的进一步研究,终于找到了可以鉴别任一图形能不能一笔画出的简便原则,即欧拉定理(一个网络能一笔画的充要条件是:它连通并且奇顶点的个数是0或2)。 / F. a! j: t: ]) K" l2 q$ b$ B - y" i) K$ ~+ r$ J6 ^0 @3 Y1 y 柯尼斯堡桥问题的解答成了数学一个新的分支拓扑学的导引,“七桥问题”也成了数学史上的一段佳话。然而当年的七桥如今仅存其三--密桥、高桥和木桥。右图所示便是其中之一桥。有幸造访俄罗斯加里宁格勒的人们不妨前往一游,或探幽访古,或体味人世沧桑,但当年的“七桥故事”是是不便重演了。