1、 证明(p-1)!≡
5 p1 r" I6 ~# o* d, m2 S2 D' N -1(modp),p为任意素数。 2、 证明费马小定理 a/ |" u! }. d6 h
p-1≡1(modp),其中(a,p)=1,且p为素数 3、 证明6 o" M. f V' z
(mn)= (m) (n),其中(m,n)=1,
; j& b" ~; \; e" f3 C (m)表示m的欧拉函数 4、 解方程3x1 +5x2=11的所有整数解 5、 证明对任意自然数n,分数(21n+4)/(4n+3)不可约 6、 设m>n是正整数。证明2n-1|2m-1的充要条件是n|m 7、 设m,n是正整数。证明(2n-1,2m-1)=2(m,n)-1 8、 证明xp-1/(x-1)=x(p-1)+…..+x+1在Q上为不可约多项式,p为素数 9、 证明:设n≥1,2n+1是素数的必要条件是n=2k 10、 证明(1)对任意正整数a,素数p|ap-a (2)若(a,p)=1,则 p|ap-1-1 11、求3406写成十进制时个位数字是多少? 12、已知正整数X满足被3除余2,被5除余3,被7除余2,求最小的X 13、证明:x4+1的奇素因数p≡1(mod8) 14、p是奇素数,则 (1)1232…(p-2)2≡(-1)(p+1)/2(modp) (2)2242…(p-1)2≡(-1)(p+1)/2(modp) 15、g(x)为Q上的不可约多项式,若g(a)=f(a),则在Q上g(x)︱f(x) 16、证明:x=u+ps-tv,u=0,1,…,ps-t-1,v=0,1,…,pt-1,t≤s是模ps的一个完全剩余系 17、 利用Euclid方法计算ax≡1(modp)的解,其中a=13 、p=19 18、 判断方程x2≡15(mod29)是否有解并说明理由 19、 设p为素数,证明模P的缩余系必有原根 20、 设l1,l2为整数且(l1,l2)=1,整数a(modp)的阶为l1,整数b(modp)的阶为l2,则ab的阶为l1l2 21、 设整数a的阶(modp)为l,如果(k,l)=1则ak的阶也是l 22、 设素数p≡1(mod4),若g为模p的原根,则-g也是原根 23、 证明:# a" o( u5 Y5 i0 Z6 @. {/ y
为无理数 24、 若l>2,证明5对模2l的次数为2l-2 25、 解方程:x3+2x+2≡0(mod125) 26、 证明9 o9 a: i8 S) ?* Q7 n
=
% I( a; ?3 ~3 D, p 为整数,其中n,r均为整数 27、 求出x2+y2=z2的全部解,其中(x,y)=(y,z)=(x,z)=1 28、 有限域Fq,a
' ~0 w" R! r% Q4 A* I Fq,q是素数,如果a是平方元,充要条件a(q-1)/2≡1(modq) 29、 p是素数,q=pn,0 x4 V8 C. h% [2 \0 ~* E+ u
是Fq
( I" e. l9 S& z& e6 y4 w) x4 y 的子域。证明:1 i n& L6 k/ B7 i: w$ Y3 s+ n
=Fpm,m︱n 30、 证明素数的个数有无穷多个 |