1 J f0 {, M" V) K; F%% ---- Build a training set of a similar version of XOR 4 V" {3 ~1 z( t; u( V5 Kc_1 = [0 0]; ! m4 _3 J5 Q' S: k9 I" c5 vc_2 = [1 1];! s; z$ f' g: ?6 q2 O# Y% q" Z! Q
c_3 = [0 1];/ }8 I# |' R3 J8 M: U" r
c_4 = [1 0]; v7 \+ Y: r' [% g( o* ~2 J
- }: |' c3 L9 q. n3 e8 v
n_L1 = 20; % number of label 1 6 Y- v" I/ {( K+ x6 y2 x& I2 Kn_L2 = 20; % number of label 21 ?* f' B$ [0 h' T5 D
( n& W! ~9 i+ p1 z5 ^$ ?( s" S 9 G; x3 S1 f+ m+ ZA = zeros(n_L1*2, 3); - ~3 t& [- i3 Y4 a- p* @+ eA(:,3) = 1;5 L; u' _+ G3 M
B = zeros(n_L2*2, 3);+ d, E1 _, a( _
B(:,3) = 0; w& ?" P) M, S& f' Z4 e) h& F! L
2 y! l s0 q. i
% create random points & O. Y' w* Z4 |. D2 ufor i=1:n_L1 9 g. M! ]$ q# c6 }9 G A(i, 1:2) = c_1 + rand(1,2)/2; , ^+ l, I3 ^* P9 @ A(i+n_L1, 1:2) = c_2 + rand(1,2)/2;5 n+ o+ E+ E2 \$ `4 t" i6 h4 ]1 J+ l
end, ?% h2 Z9 }& W9 U- \$ x) d5 @
for i=1:n_L26 E/ _+ r& l, |3 A5 b9 ^) g
B(i, 1:2) = c_3 + rand(1,2)/2; ' ]# m0 \& t& s* \ B(i+n_L2, 1:2) = c_4 + rand(1,2)/2;2 j ^+ z7 c: [7 M' O
end . I! R0 Z1 _+ N% \) `6 X* l1 F! s f6 A6 }5 r k- }! F
% show points ) N) _$ F4 H( ?. [* ~; fscatter(A(:,1), A(:,2),[],'r');2 y- Y3 f6 q# v2 V0 D l! J
hold on1 N) _. f& g6 g3 [3 p+ f9 q }( t
scatter(B(:,1), B(:,2),[],'g');: c' ]) O' O2 r/ Q" U9 H
X = [A;B];& _3 }6 c5 c- Y) r& ]
data = X(:,1:2); . D8 H) _( A8 n1 ^1 Tlabel = X(:,3); " s. l% Q# Q8 O) e& k5 K0 W) C6 w u# L3 k1 l/ e( ^4 g
%% Using kmeans to find cinter vector9 M) d) \: o! A/ z
n_center_vec = 10; ) e/ p) E- _8 W4 d+ [5 j! G( Xrng(1); 2 O' d8 o# R) c* v7 }0 P[idx, C] = kmeans(data, n_center_vec);( w: ~: ?7 o- d' v( _5 F+ S
hold on" [" V/ `; B' |0 l3 p
scatter(C(:,1), C(:,2), 'b', 'LineWidth', 2);0 W; @7 z. @4 E# C
- i/ k$ H8 w; j- P
%% Calulate sigma ( D! O5 U! F3 T+ G6 Q
n_data = size(X,1); # @5 x% Q! z8 M, Y, c! z# d k! T7 l7 y$ F* f) ]$ L4 |1 ]4 W
% calculate K3 j8 k0 Q6 i! F+ ]) G+ X, [; i
K = zeros(n_center_vec, 1); 2 L1 T. _! E ?3 ?' I6 yfor i=1:n_center_vec8 K. L! G, r, t8 m+ U O& b
K(i) = numel(find(idx == i)); . \. q- k! w- k- v# \end. [. s7 Q* B7 M2 ^* a
1 j7 c3 n: p9 @: x3 A9 a) I$ Z% Using knnsearch to find K nearest neighbor points for each center vector/ g, o6 ^) {) J( V7 O& b3 y
% then calucate sigma ! Q* `8 d# F8 j0 |! f% s+ Dsigma = zeros(n_center_vec, 1);9 x# Z8 ~3 o$ \$ ^" w
for i=1:n_center_vec 3 T$ W" D4 Z/ u. p; b6 @ [n, d] = knnsearch(data, C(i,:), 'k', K(i)); # |4 L7 d& f. c; s; L L2 = (bsxfun(@minus, data(n,:), C(i,:)).^2); 6 {4 N) @9 c. n L2 = sum(L2(:));5 l$ O7 ^- V; [3 p
sigma(i) = sqrt(1/K(i)*L2);6 `0 h" v% r$ l3 U: N4 j
end " w) z$ @/ s8 U3 ^) I* ^, p& {. Z, \6 {: m, U
%% Calutate weights+ Z2 F. M% R; ` a% m/ p' {$ w
% kernel matrix: G& S5 T9 L d: C
k_mat = zeros(n_data, n_center_vec); " {( L2 _! s! k: j% r5 W8 t$ |- P* D( Q5 F
for i=1:n_center_vec* _% O* y6 d0 u* g+ k& D
r = bsxfun(@minus, data, C(i,:)).^2;; G2 b2 R2 h- k/ f
r = sum(r,2); / j. O( U8 M# P k_mat(:,i) = exp((-r.^2)/(2*sigma(i)^2));5 M0 J" ?! R2 C
end 9 m% p9 J! G1 L7 ^% B) }7 h i# W, w6 B0 q5 t
W = pinv(k_mat'*k_mat)*k_mat'*label; 6 R9 O8 }, ~2 f& u0 n/ U7 h# iy = k_mat*W; % F; t$ w- }+ ]; `%y(y>=0.5) = 1;1 U4 V# ^ r+ t
%y(y<0.5) = 0; # K8 H3 B7 m" G/ L2 u$ T2 u& r9 Y* w4 b, ?5 b. o. c
%% training function and predict function * o) y% O( N' k( Y% V- T2 q[W1, sigma1, C1] = RBF_training(data, label, 10);! `5 m; M' x, b8 |) N4 p! @: R
y1 = RBF_predict(data, W, sigma, C1);% D( {. o! x. Q1 M6 R1 z: K
[W2, sigma2, C2] = lazyRBF_training(data, label, 2);! w, I, V3 y/ E; [
y2 = RBF_predict(data, W2, sigma2, C2);/ z" D) K: f- b9 ? # K# ~' G% s. {5 C8 R8 W4 ~8 o0 i* p$ [: |, r% X& |
上图是XOR训练集。其中蓝色的kmenas选取的中心向量。中心向量要取多少个呢?这也是玄学问题,总之不要太少就行,代码中取了10个,但是从结果yyy来看,其实对于XOR问题来说,4个就可以了。 5 u* r$ x+ i a4 S2 e' E/ S; P0 E- m j3 Y9 w7 g
RBF_training.m 对demo.m中训练的过程进行封装 d$ l* \" c" L
function [ W, sigma, C ] = RBF_training( data, label, n_center_vec )% Q! \: D* Z7 R7 l
%RBF_TRAINING Summary of this function goes here0 f4 L% M4 b$ Y& ], _9 b1 a
% Detailed explanation goes here& r3 v0 T ~$ g6 [1 p) ?
4 B' T% i/ r) O% i1 o
% Using kmeans to find cinter vector ' Q( [2 }: C. ^/ ? rng(1); ' T7 [( c# a( S% p2 I [idx, C] = kmeans(data, n_center_vec);6 T0 R6 K5 |6 G ^& Z+ x7 x
2 V) R! p! W4 K0 w0 {. L
% Calulate sigma 0 v4 |9 Z0 Z. G" E+ [
n_data = size(data,1); 7 `/ [2 Q6 `* L. j/ M 4 c" l0 B$ s9 ?. t9 Q( ^! |+ o9 D % calculate K . H- b' F; h) _3 H# q K = zeros(n_center_vec, 1); ; f; g3 ?8 T0 t. x for i=1:n_center_vec K6 ^1 Q3 {- c; C. @! t+ D5 i
K(i) = numel(find(idx == i));* Z$ e- A) T. L5 L' @ e6 z" w
end( U3 x' E* L! p- |" S6 f8 t# y0 d
; G9 Y: V& x# L$ Z. C5 Z2 I0 ~
% Using knnsearch to find K nearest neighbor points for each center vector V" Z7 Y1 o4 l/ \' M$ l
% then calucate sigma! g( d% N0 X' |
sigma = zeros(n_center_vec, 1); ( U+ ?$ j5 Q$ Z( V1 T- ? for i=1:n_center_vec1 I% f" c( g3 R: v
[n] = knnsearch(data, C(i,:), 'k', K(i));0 e6 k# o9 t4 I2 K9 T( F0 O- _
L2 = (bsxfun(@minus, data(n,:), C(i,:)).^2);$ E! @ R& o( R% x9 \5 c
L2 = sum(L2(:));7 I; e, L7 K: v% C3 D" T
sigma(i) = sqrt(1/K(i)*L2); # t& a9 e r. L9 X5 c! J end4 ~7 D" l# ]& a7 i
% Calutate weights [# k. e& x) A/ H/ K, k % kernel matrix' ^- \4 V q+ b# P |* y
k_mat = zeros(n_data, n_center_vec);/ z( y+ r* x6 \' R5 G* M& d
) z1 _1 ?0 u4 N+ S, _' f/ X+ C for i=1:n_center_vec 2 @% b& f; l+ f6 m r = bsxfun(@minus, data, C(i,:)).^2; $ \% a% t# H7 b; A5 V W* j! F; f6 Q r = sum(r,2); 6 z( Y. t; F. E. z# D k_mat(:,i) = exp((-r.^2)/(2*sigma(i)^2));8 l0 U: U2 v. n
end' i2 ~! C# U* G
1 V7 f! x" F9 f8 u* c" Q! i W = pinv(k_mat'*k_mat)*k_mat'*label; / [) k2 J" `. w3 H+ Q" Mend' L5 V5 r: c3 e
. v$ B; d. B6 x: qRBF_lazytraning.m 对lazy RBF的实现,主要就是中心向量为训练集自己,然后再构造核矩阵。由于Φ一定可逆,所以在求逆时,可以使用快速的'/'方法. U' d7 A5 b" Q8 a* N
. x; e# m& h) j2 o1 j5 @3 |$ R
function [ W, sigma, C ] = lazyRBF_training( data, label, sigma )5 \. \& F/ X2 U; Y, s" v
%LAZERBF_TRAINING Summary of this function goes here 0 Q( e; \- s i& u) W8 H! K$ k% Detailed explanation goes here q" g& c. ]/ {; k( R! ]2 |
if nargin < 3" x- D. B+ u: j+ H8 u* y
sigma = 1; ! m! U' M4 p, ~; S) _9 k end 1 \9 t8 x' x( S0 w; U+ H + h7 a5 ]! q) o n_data = size(data,1); ; ^' i# S* v$ u2 [' R& A C = data;/ x; H! r! O! I% d4 u$ C i' t! ]3 y8 |
: f1 g- [5 r7 a" M" R' T$ ?9 I
% make kernel matrix # l0 N4 \% }) u+ g k_mat = zeros(n_data); J( ~: c! S& q) G& w for i=1:n_data $ l o/ w3 R+ I4 r8 j) u L2 = sum((data - repmat(data(i,:), n_data, 1)).^2, 2); # ]$ v% g9 t$ j0 n) b3 f k_mat(i,:) = exp(L2'/(2*sigma)); 2 P F1 |' w2 { b+ F7 B end/ o5 k$ Z s5 y
$ h& m& x# Q! x' D4 R
W = k_mat\label;9 `1 D0 y1 ~5 W0 E& z X
end ) [7 O* R+ e# |) Z9 X2 S4 C 1 a; A" t6 v- |6 T0 d6 S& T' JRBF_predict.m 预测 & |7 a: J: `5 S+ x9 a , j/ f8 D6 ?# _" t; {/ efunction [ y ] = RBF_predict( data, W, sigma, C ) 3 z5 Y1 \& K$ a9 V! C! a$ o%RBF_PREDICT Summary of this function goes here. ]- n! d, |" k8 M8 p4 @* G
% Detailed explanation goes here 8 [7 Z$ Y/ F* `5 `/ Z+ z n_data = size(data, 1);) U: I- g6 T# b9 u; `
n_center_vec = size(C, 1);, W+ v: E1 Y* O) h% l: a& l
if numel(sigma) == 1 ) W2 [" W2 B+ G$ I sigma = repmat(sigma, n_center_vec, 1);9 X/ c4 M" e1 q$ z, C$ T N- N
end/ A7 t8 k8 ]. S
3 d: ~4 l o6 @$ l a# T % kernel matrix+ E- C- i! E; A0 h
k_mat = zeros(n_data, n_center_vec); 6 y& A: K( X% d# F6 b* Q. L E6 D for i=1:n_center_vec 5 P8 \# \+ K, M r = bsxfun(@minus, data, C(i,:)).^2; 1 \ u4 D# h) v' p6 |" o( l r = sum(r,2);0 p; ?, m* F9 G: X
k_mat(:,i) = exp((-r.^2)/(2*sigma(i)^2));2 w8 x3 U1 C' T1 e% O5 K+ l
end 5 ^4 _ s2 w0 V# J" t0 ^% h ! {! F" T3 s# K y = k_mat*W;1 Z& x* L% g# k0 M- ?1 _' v. @5 C: C
end 2 i0 P/ r6 f5 p# E3 r* b9 U4 A ; A5 l* @2 N# b! K& O; [, ^———————————————— 7 @: ^, j+ a9 e3 A F8 {8 n版权声明:本文为CSDN博主「芥末的无奈」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。- j k8 N0 c* ?
原文链接:https://blog.csdn.net/weiwei9363/article/details/728084966 k& Z! Z/ C0 v1 }& J+ Q
+ E& x, a2 `- ?1 q: x