; i Z7 x- N1 L 7 {" l- Y% g$ H, s2 N. T & T0 h% [/ }* l6 f0 r3. [color=rgba(0, 0, 0, 0.75)]W [color=rgba(0, 0, 0, 0.75)]可以利用最小二乘法求得 @6 S5 L9 @8 a/ m" C
" Z3 B+ @8 T/ ?4 H4 m% k
Lazy RBF* b: l+ o! r' {+ I$ X7 X: X
) Q, R) u4 C' k3 {+ r( e6 ^) E( D
可以看到原来的RBF挺麻烦的,又是kmeans又是knn。后来就有人提出了lazy RBF,就是不用kmeans找中心向量了,将训练集的每一个数据都当成是中心向量。这样的话,核矩阵Φ就是一个方阵,并且只要保证训练中的数据是不同的,核矩阵Φ就是可逆的。这种方法确实lazy,缺点就是如果训练集很大,会导致核矩阵Φ也很大,并且要保证训练集个数要大于每个训练数据的维数。 I+ P4 s, z# ~! D; h6 _ , m# b/ c! D1 H6 TMATLAB实现RBF神经网络下面实现的RBF只有一个输出,供大家参考参考。对于多个输出,其实也很简单,就是WWW变成了多个,这里就不实现了。 ' k( q5 d% a k7 F ( {# w, L5 A$ q. y! t8 S$ B5 sdemo.m 对XOR数据进行了RBF的训练和预测,展现了整个流程。最后的几行代码是利用封装形式进行训练和预测。 / s0 }+ L. @3 \9 u6 B1 Y, u$ {" e1 u/ Z
clc;, `! S( l7 m9 e# L+ x, o
clear all; ; b9 w" L! O4 I, uclose all;* \; ^8 ?% w. Y2 }$ H( w% [
, _ }+ Q5 f1 V C4 r7 k9 E, a" s. V%% ---- Build a training set of a similar version of XOR( b' `0 E& I1 @
c_1 = [0 0]; _3 C b# K+ F; e% n
c_2 = [1 1]; 9 w7 o, L1 d; q8 Tc_3 = [0 1];8 U* b1 M! W! s
c_4 = [1 0]; * S1 G$ C u! c. G' @9 J% V8 _5 p8 t: ?% l6 J) |1 e0 E6 ]
n_L1 = 20; % number of label 1 5 M' {* X% H4 i, z) t5 kn_L2 = 20; % number of label 27 f/ g7 g" a. @8 h* ^! |, R
$ d, M1 c0 |" j; j x& ]! l" n8 I- o) I4 ^; ~# p* N4 s
A = zeros(n_L1*2, 3); X. l5 f, b8 D. w/ k3 iA(:,3) = 1;; r' H5 s& u3 {
B = zeros(n_L2*2, 3);6 ?' o) t. b+ p1 R
B(:,3) = 0; 8 m: J6 h, f+ i( z* @: s% H! {. b , S3 H' \. b' @9 p0 p7 T, V4 F' `% create random points7 q) l+ b" D' D0 v- E
for i=1:n_L1 % A' S+ x- ?! e g+ \% n% M6 E A(i, 1:2) = c_1 + rand(1,2)/2;# Z& _8 e' a3 J# K A
A(i+n_L1, 1:2) = c_2 + rand(1,2)/2;+ E' y6 x2 F3 x
end& G' K+ q3 v3 `9 ?2 m
for i=1:n_L2& S4 L$ ], S: M2 k
B(i, 1:2) = c_3 + rand(1,2)/2; ' s( F; \7 I1 S) b B(i+n_L2, 1:2) = c_4 + rand(1,2)/2;2 Z! _5 [& x+ M; a3 Y7 w
end3 n P9 `% C6 o% D
- B+ r q+ p8 q) t+ U! p8 a; W% show points 0 e8 V/ x+ r3 s. f, bscatter(A(:,1), A(:,2),[],'r'); : U6 B3 c9 n P. V7 ]: Shold on8 t4 }! n) ^8 X
scatter(B(:,1), B(:,2),[],'g'); " i/ x; V+ N8 e) {1 DX = [A;B];3 e! ?# E. Q9 c7 b- j- n; ~
data = X(:,1:2);/ G8 |9 J: `3 L' ]" E! s3 `
label = X(:,3); 1 q6 D" ], H r6 p5 K2 A" m8 v" C# E$ c% \, T- [$ ^4 G! K
%% Using kmeans to find cinter vector2 Y: ^" \' f, f2 M/ P6 \6 ^) y
n_center_vec = 10; - h( U2 ~6 s' T! i- f2 Erng(1);+ [6 X. q: e, {* H+ B, I+ J
[idx, C] = kmeans(data, n_center_vec);& r3 J2 Y+ D4 B: X0 f2 ^5 B% @( E
hold on8 A2 G2 V6 P! S5 K' P$ F
scatter(C(:,1), C(:,2), 'b', 'LineWidth', 2);1 U4 b) y) w8 ^$ Y9 C" Y" @% D
6 ~. [- n! @. f% w0 K1 g
%% Calulate sigma . p$ T7 O" y3 M9 Z' X. V
n_data = size(X,1);5 ?; M- }9 B& A# U4 ~
' v2 Z& A! Q4 C9 o, }% calculate K: R: c" y$ x) @6 U$ ]' b' O3 ^
K = zeros(n_center_vec, 1);* y( ?3 D. ^3 ^* c) u; ?' O
for i=1:n_center_vec " B& W6 I* n6 C' E' w2 z4 h1 G" ` K(i) = numel(find(idx == i)); 3 `# Y- _1 J. ^' [0 @ J4 Vend & i- f) \( x9 F+ h% R 9 _! K/ d8 u( v# ?- {0 F* n% Using knnsearch to find K nearest neighbor points for each center vector ) \4 M4 R) r7 m8 {! X6 b- Z; Q% then calucate sigma ; f v5 c/ q7 V2 k( Tsigma = zeros(n_center_vec, 1); 3 \, E' \& Y: G7 cfor i=1:n_center_vec " \4 t0 o, ]2 Y1 o4 y, h( { [n, d] = knnsearch(data, C(i,:), 'k', K(i));% a1 r7 N7 d, q$ }$ D
L2 = (bsxfun(@minus, data(n,:), C(i,:)).^2);0 ]$ i8 J4 P, [, {# I' \5 C$ s
L2 = sum(L2(:)); ' x7 g% {! r/ n( N/ U; F9 y sigma(i) = sqrt(1/K(i)*L2);8 I: {8 C" [0 z2 [* ]
end + n* e. s0 C7 ~ G" D# P5 `( h P w. l/ X! f
%% Calutate weights8 l! }$ I; o! m7 d+ L* T
% kernel matrix * R7 a* G/ M' E/ k1 |$ `/ l4 Zk_mat = zeros(n_data, n_center_vec);# D) U4 U9 i$ _: H) P/ f$ f% y
4 f% S% H N) i; z: F6 Sfor i=1:n_center_vec 8 L$ k6 E! L$ l( D1 R( | r = bsxfun(@minus, data, C(i,:)).^2;9 F% E m/ x0 {( _3 e9 E
r = sum(r,2);8 V X7 c3 R4 f& j% T4 p
k_mat(:,i) = exp((-r.^2)/(2*sigma(i)^2));4 M2 h. e3 S& k8 ?
end: Z/ |/ L, R# M1 V' g4 w
3 V# r9 ?$ `3 |0 @- G' t
W = pinv(k_mat'*k_mat)*k_mat'*label;; n( q8 s, W- d, X$ P* N
y = k_mat*W;+ w5 z2 y" V# y! o) _% A# f r% T
%y(y>=0.5) = 1;! k+ b1 r0 I) T3 h$ H! b
%y(y<0.5) = 0;: I4 ~$ @- E$ c. G Y7 k( E
# J* j6 @3 {: P, a: g' F# o%% training function and predict function ! k; j ]4 R6 e/ h; y4 l[W1, sigma1, C1] = RBF_training(data, label, 10);7 O2 s% A8 G$ l7 V
y1 = RBF_predict(data, W, sigma, C1); % E- C( |" S5 E, _- A[W2, sigma2, C2] = lazyRBF_training(data, label, 2);, {& U- \. R* R/ \5 {( B1 z2 K; ]
y2 = RBF_predict(data, W2, sigma2, C2); : G" s* u! h* g0 G" B( _0 D" L8 c$ I6 g3 T
9 e, o3 a/ h; E2 }2 f9 p
上图是XOR训练集。其中蓝色的kmenas选取的中心向量。中心向量要取多少个呢?这也是玄学问题,总之不要太少就行,代码中取了10个,但是从结果yyy来看,其实对于XOR问题来说,4个就可以了。 3 T2 M! a/ B6 x* ^8 z$ g; X: I4 ^( T+ J( A+ E" k6 s( j1 q
RBF_training.m 对demo.m中训练的过程进行封装 X( {1 Y, o5 q$ j5 q* {
function [ W, sigma, C ] = RBF_training( data, label, n_center_vec )$ e3 `$ F$ y5 S7 o
%RBF_TRAINING Summary of this function goes here $ U8 a Y; Y# D9 Z9 ?8 O4 h4 ]% Detailed explanation goes here, B6 U U8 I: p9 i
' F0 h Z( ^' f+ q) H+ e
% Using kmeans to find cinter vector ) l5 l' F& x7 d$ I3 Z+ s" c rng(1); 2 p" \; s6 F$ D/ f8 i, |9 c [idx, C] = kmeans(data, n_center_vec);! ~) l4 X0 k% P% Q$ ~* l5 _; n
' k% @+ b' q4 O) M- `* n$ _ I8 ?
% Calulate sigma % e8 ?7 o r1 g: W+ ]" Q3 { n_data = size(data,1); " D: E# R* L! V/ k 5 A% [- O' n% D- d % calculate K8 o! T) H) |! v4 Z2 u5 I7 [
K = zeros(n_center_vec, 1); 8 W( @( K9 H5 A$ g/ n for i=1:n_center_vec" p$ q! B& [$ a- i( @) u
K(i) = numel(find(idx == i)); # v* ]$ r5 A; p7 G' X end : T4 C$ c6 {* e# |8 M# H; P( ?1 u) i# }
% Using knnsearch to find K nearest neighbor points for each center vector / m: l, Q `7 l % then calucate sigma % Z1 t6 c7 L6 R$ C5 Q6 ? sigma = zeros(n_center_vec, 1); 5 `1 j- | C6 \+ h2 Q: A& b for i=1:n_center_vec! }, E! n" I4 u: ]9 n; }
[n] = knnsearch(data, C(i,:), 'k', K(i)); - I* D& j/ s9 j7 S$ C% a, W1 | L2 = (bsxfun(@minus, data(n,:), C(i,:)).^2);% _9 U% c6 B) [* M: }
L2 = sum(L2(:)); # M1 l' i, X8 f, Z3 [% z* i, g sigma(i) = sqrt(1/K(i)*L2); ' k: s7 i* W1 k2 z3 }. i end& Y4 T6 y( d# X8 O
% Calutate weights4 b- l0 t% F* r' M/ J& _# k. n2 Q$ _
% kernel matrix# ~& k5 y% X# J6 C1 E$ J
k_mat = zeros(n_data, n_center_vec);: J; |) U3 Y2 [$ v; G, d, S
6 a! g( b7 }0 G, k. W3 }
for i=1:n_center_vec - B* `1 \2 @5 U) J9 M9 |: D! m0 l r = bsxfun(@minus, data, C(i,:)).^2; ) p% q5 j u- s& N% c- ? r = sum(r,2);) S: J* C/ z: z w W( P$ x
k_mat(:,i) = exp((-r.^2)/(2*sigma(i)^2)); - `# `: P4 m5 I4 p% k, h end 3 [3 q9 D- O: @# f+ q8 ^! M# k% h" b; F6 E, T
W = pinv(k_mat'*k_mat)*k_mat'*label;! n# D1 @; m z' {" B
end, x$ m) J8 N0 J0 Q5 r1 U2 I* g
8 l! f2 m) C3 m# h/ \$ M+ FRBF_lazytraning.m 对lazy RBF的实现,主要就是中心向量为训练集自己,然后再构造核矩阵。由于Φ一定可逆,所以在求逆时,可以使用快速的'/'方法* a+ E8 B! v2 I
+ b# s: u3 k- h- f Z, [( B+ k
function [ W, sigma, C ] = lazyRBF_training( data, label, sigma ) F7 u7 u% z+ j9 {. j' Y
%LAZERBF_TRAINING Summary of this function goes here3 n! `1 y0 o/ H
% Detailed explanation goes here' {- t F1 p! W5 K
if nargin < 37 ^* W4 P% Q6 t; i0 c/ t
sigma = 1; * M" [ A( n9 p4 b0 ^& Y8 l
end : K1 B6 i1 o# Z8 x5 i; f+ ^ / W: }7 m) S# V0 `$ F3 k n_data = size(data,1);/ z6 F8 i- v8 O( W
C = data; ( o' D$ Q' k3 @& X ) z5 n6 H/ Q1 M* `, w % make kernel matrix! k9 D, v7 P- a8 G$ P
k_mat = zeros(n_data);; C$ G3 M; `& D
for i=1:n_data & i/ D4 F& b7 j! q5 W L2 = sum((data - repmat(data(i,:), n_data, 1)).^2, 2); , u8 p9 A1 ?$ }% f k_mat(i,:) = exp(L2'/(2*sigma));, U9 f8 \. n% d+ R5 c: N( B
end# P, W. [) a0 f( o7 V% G9 i
7 G% Z- t4 ]* p1 `3 L+ M% L7 l
W = k_mat\label;- O7 }( F8 B6 g$ p0 ?
end ) O; M% A3 f- b, i o: v+ O ! z' H/ @+ H( ~ J% ~# @5 QRBF_predict.m 预测 5 N- I1 ~. H3 \( P$ X# C# R$ n 1 C7 _$ g6 W& _6 @* d0 cfunction [ y ] = RBF_predict( data, W, sigma, C )" ~0 ~8 W8 a) y% Y1 E
%RBF_PREDICT Summary of this function goes here! t) X; D% r" r3 z; I: }8 [
% Detailed explanation goes here ) T# Q4 @: X/ I1 j* i n_data = size(data, 1); % ~- u$ K* R: F) T% R" |( t n_center_vec = size(C, 1); 9 z/ P: b+ D: p. M if numel(sigma) == 11 Q! B# M7 u( g4 x0 `
sigma = repmat(sigma, n_center_vec, 1); , ^* P: K: d- E, X end0 y) j7 Y9 U( y8 s$ G( Q
+ y" V, K! ~$ A" c" Q% I; A
% kernel matrix & v" g! k, ?" N4 r; L k_mat = zeros(n_data, n_center_vec);% h U9 Z7 {" p. d) i. Z z
for i=1:n_center_vec# o5 ^3 |: o4 X; T4 m! ?4 {
r = bsxfun(@minus, data, C(i,:)).^2; , W( h8 p7 T* K r = sum(r,2); $ k. `# E/ |/ [" j& X! R k_mat(:,i) = exp((-r.^2)/(2*sigma(i)^2)); 8 p! T1 D2 f& v9 E end+ X# S, K+ a) W: z3 d. r5 K
+ ^: Q; _" [4 ?9 N0 E: M: a
y = k_mat*W; - V$ b ]& t& E2 q7 a. |end 3 V9 v* u8 y1 z 2 n* m' y6 o9 G% ?———————————————— 7 N' ^; U! b; ^$ `1 J9 h ^版权声明:本文为CSDN博主「芥末的无奈」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。6 |; w1 v) b4 j0 K8 E% l9 B5 h4 h
原文链接:https://blog.csdn.net/weiwei9363/article/details/728084964 r! w3 V o- I3 _% ^6 J0 |
3 G/ h* F& d# E8 ]3 Y* ~+ }2 w
' ?3 ]8 W1 ?9 i+ T- h" W U" ~
2 U0 n! U! T6 |6 m5 {7 S; x