QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2335|回复: 0
打印 上一主题 下一主题

[其他资源] 基于EEMD_GM_ELM模型的滑坡位移预测

[复制链接]
字体大小: 正常 放大

395

主题

3

听众

4992

积分

  • TA的每日心情

    2021-3-28 15:16
  • 签到天数: 25 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2020-12-20 10:51 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    Landslide displacement prediction based on EEMD一GM-ELM model
      A' k5 `- L% p( d; f( B0 r" H
    $ y: G3 F, S) c& a  |+ L  G& G! k
         As the landslide is affected by various complex factors, the displacement data obtained often has great uncertainty in real life, so it is difficult to predict the displacement data with only one prediction model. In consideration of the fluctuation factor rainfall, this paper first uses the Ensemble Empirical Mode Decomposition (EEMD) model to decompose the landslide displacement data into trend data and fluctuation data based on the limitations of a single
    + _9 |) G3 t# w. k- Q% |prediction model, and the two improved prediction algorithm are used to predict landslide displacement data. Through threshold optimization, the number of neurons in the hidden layer of Extreme Learning Machine (ELM) is selected to establish the correspondence between rainfall and fluctuation data. According to the haracteristics of trend data and volatility data, the gray GM (1,1) model and improved ELM model are used to predict the trend data and volatility data,respectively. Experimental results show that the model combines the advantages of the GM (1,1) model and the improved ELM model, and provides a reliable prediction model for landslide displacement based on the consideration of volatility factors.) q  A1 @/ D( |% [( `. r3 G- |

    6 a4 H/ N8 F+ U8 iKeywords:Displacement decomposition; GM(1,1);Improved ELM; Combination prediction;' x5 L) w) w) j7 h: Y4 V( J
    # a( J1 S9 [8 [& c
    基于EEMD_GM_ELM模型的滑坡位移预测
    ' L% V* {4 l% h7 _4 O, g

    0 Q& t% a" o+ o% P% A8 o* n$ f      由于滑坡受各种复杂因素的影响,在现实生活中得到的位移数据往往具有很大的不确定性,因此仅用一个预测模型很难对位移数据进行预测。考虑到降雨的涨落因素,本文首先利用集合经验模态分解(EEMD)模型,基于单一的局限性,将滑坡位移数据分解为趋势数据和波动数据利用预测模型和两种改进的预测算法对滑坡位移数据进行预测。通过阈值优化,选取极值学习机(ELM)隐层神经元个数,建立降雨与波动数据的对应关系。根据趋势数据和波动数据的特点,分别采用灰色GM(1,1)模型和改进的ELM模型对趋势数据和波动数据进行预测。实验结果表明,该模型综合了GM(1,1)模型和改进ELM模型的优点,为考虑波动因素的滑坡位移预测提供了可靠的模型。8 u* j2 B% ?( T: B, O

    + C! e4 m3 R. B( J6 u关键词:位移分解;GM(1,1);改进ELM;组合预测;
    5 W8 D8 X  F" [; B' y5 _3 Q) q4 x4 _) g
    ( e# w5 B9 V* |& b( _% w

    基于EEMD_GM_ELM模型的滑坡位移预测_付文涛.caj

    314.47 KB, 下载次数: 1, 下载积分: 体力 -2 点

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-1 09:53 , Processed in 0.514174 second(s), 53 queries .

    回顶部