- 在线时间
- 129 小时
- 最后登录
- 2023-8-30
- 注册时间
- 2020-11-26
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 15943 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 4992
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 419
- 主题
- 395
- 精华
- 0
- 分享
- 0
- 好友
- 0
TA的每日心情 | 衰 2021-3-28 15:16 |
---|
签到天数: 25 天 [LV.4]偶尔看看III
 |
一种基于受限波尔兹曼机的推荐算法5 h6 ] u! g/ Y3 B0 ~6 A0 j
" E' K0 o& R5 b8 q' W# c- `; M
在数据量过于庞大的情况下,RBM 模型所输出的推荐结果会比较宽泛。此外,目前众多的协同过滤算法无法对巨大的数据集进行更好的处理。所以,尝试通过深度学习来对个性化推荐进行加强,指出把受限波尔兹曼机与隐含因子模型相结合的混合推荐方法。首先用 RBM 算法生成候选集,并对候选集的稀疏矩阵进行评分预测,然后使用 LFM 对候选结果进行排序,进而选择最优方案进行推荐。使用大型公开数据集对本文算法进行反复验证,通过测试可以看出,相比较于传统的推荐模型,本文所提阐述的方式能够有效提高评分预测的精准度。
9 b# X; W0 o- f. R w
0 d* ~: b. b, h0 M0 c ?关键词: 推荐算法; 深度学习; RBM 模型; LFM 模型
5 D% u$ m9 m. H
1 J) w3 J6 F4 s& i& d$ W4 k
' a' Q* n( s, C5 G; i* f( z* z' {0 @( W [0 O" Z) g
|
zan
|