- 在线时间
- 129 小时
- 最后登录
- 2023-8-30
- 注册时间
- 2020-11-26
- 听众数
- 3
- 收听数
- 0
- 能力
- 0 分
- 体力
- 15943 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 4992
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 419
- 主题
- 395
- 精华
- 0
- 分享
- 0
- 好友
- 0
TA的每日心情 | 衰 2021-3-28 15:16 |
---|
签到天数: 25 天 [LV.4]偶尔看看III
 |
基于深度信念网络和迁移学习的隐匿 FDI 攻击入侵检测 / k3 p Y) y! G1 O0 C( w: h
& K8 |* i; ?8 A: }
成功地检测隐匿虚假数据入侵(False Data Injection, FDI)攻击是确保电力系统安全运行的关键. 然而, 大多数工作通过建立 FDI 攻击模型来模拟真实的入侵行为, 所得到的模拟数据往往与真实数据存在一定的差异, 导致基于机器学习的检测方法出现较差的学习效果. 为此, 针对源域中模拟样本数据量大而目标域中真实样本标记少的特点, 提出了基于深度信念网络 (DBN) 和迁移学习的检测算法, DBN 中的受限玻尔兹曼机 (Restrict Boltzmann Machine, RBM) 能对海量目标域无标签样本进行特征自学习, 而基于模型的迁移学习方法克服了数据之间的差异性, 同时解决了有标签真实样本稀缺的问题. 最后, 在 IEEE 14-bus 电力系统模型上验证了所提方法的优点和有效性.) p% ^5 b% X& Q; J# ^; m7 r& O' j+ o: r
1 d4 t3 ^) T; v3 |; _, l) r$ T关键词: 智能电网;隐匿虚假数据入侵攻击;深度信念网络;迁移学习; 无监督学习
% p8 x9 J; [) ^' ]& c& F# S: H1 N- t
' x$ a. b* F7 a8 \, Y# b/ s
" o2 s5 c& ?8 f4 X+ }
! J$ b4 t4 |% d" h0 V9 O. y |
zan
|