- 在线时间
- 699 小时
- 最后登录
- 2023-3-1
- 注册时间
- 2020-3-24
- 听众数
- 5
- 收听数
- 0
- 能力
- 0 分
- 体力
- 15401 点
- 威望
- 0 点
- 阅读权限
- 150
- 积分
- 5106
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 969
- 主题
- 953
- 精华
- 0
- 分享
- 0
- 好友
- 10
TA的每日心情 | 开心 2022-10-20 10:40 |
|---|
签到天数: 42 天 [LV.5]常住居民I
TA的关系
- 自我介绍
- 好
 |
流数据在线异常检测方法研究
. D( m7 ~2 _/ H! [- ^, x
* E9 [- [. q5 T1 ^" W* V6 B3 t; ?% l, g分析了流数据的一些显著特点如数据量无穷、海量、数据分布不均衡且动态变化、( [6 m7 |4 B9 W6 T( c" `
产生快等特征基础上,针对异常数据的“少而不同”的本质特点,研究了基于隔离的异! n- r. c H( C6 u
常检测算法并进行了改进,使其适应于流数据环境。其次,针对在线集成学习能很好地3 {/ r o6 K: V+ A( ^
应对数据的动态分布变化的特征,引入在线集成学习理论,提出了基于集成学习的流数+ a2 n" `6 H' j2 Y9 V
据在线检测器更新策略。同时分析了基于隔离的异常检测算法的缺陷4 Y. z4 y- t" c
- ?" K/ P6 N( a1 O) Q0 s: J w7 ] W8 j, m
|
zan
|