QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 2490|回复: 0
打印 上一主题 下一主题

[其他资源] 基于模拟退火算法的改进极限学习机

[复制链接]
字体大小: 正常 放大

1178

主题

15

听众

1万

积分

  • TA的每日心情
    开心
    2023-7-31 10:17
  • 签到天数: 198 天

    [LV.7]常住居民III

    自我介绍
    数学中国浅夏
    跳转到指定楼层
    1#
    发表于 2022-1-2 11:26 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
                 基于模拟退火算法的改进极限学习机+ `3 x1 e( B6 Y  w% N: B
    传统的极限学习机作为一种有监督的学习模型,任意对隐藏层神经元的输入权值和偏置进行赋值,通过计算隐藏层神经元的输出权值完成学习过程.针对传统的极限学习机在数据分析预测研究中存在预测精度不足的问题,提出一种基于模拟退火算法改进的极限学习机.首先,利用传统的极限学习机对训练集进行学习,得到隐藏层神经元的输出权值,选取预测结果评价标准.然后利用模拟退火算法,将传统的极限学习机隐藏层输入权值和偏置视为初始解,预测结果评价标准视为目标函数,通过模拟退火的降温过程,找到最优解即学习过程中预测误差最小的极限学习机的隐藏层神经元输入权值和偏置,最后通过传统的极限学习机计算得到隐藏层输出权值.实验选取鸢尾花分类数据和波士顿房价预测数据进行分析.实验发现与传统的极限学习机相比,基于模拟退火改进的极限学习机在分类和回归性能上都更优.# O' n3 ]$ \& |; J7 D6 V) a! B
    : s( F, u6 b& a) t, \

    基于模拟退火算法的改进极限学习机.pdf

    1.13 MB, 下载次数: 0, 下载积分: 体力 -2 点

    售价: 2 点体力  [记录]  [购买]

    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-5-14 06:33 , Processed in 0.392233 second(s), 54 queries .

    回顶部