- 在线时间
- 514 小时
- 最后登录
- 2023-12-1
- 注册时间
- 2018-7-17
- 听众数
- 15
- 收听数
- 0
- 能力
- 0 分
- 体力
- 40032 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 12721
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1419
- 主题
- 1178
- 精华
- 0
- 分享
- 0
- 好友
- 15
TA的每日心情 | 开心 2023-7-31 10:17 |
---|
签到天数: 198 天 [LV.7]常住居民III
- 自我介绍
- 数学中国浅夏
 |
改进遗传模拟退火算法在TSP优化中的应用
+ t$ Q% |# m" p/ @, M6 W针对旅行商问题(TSP)优化中,遗传算法(GA)容易陷入局部最优、模拟退火算法(SA)收敛速度慢的问题,提出一种基于改进遗传模拟退火算法(IGSAA)的TSP优化算法.首先根据优化目标建立数学模型;然后对遗传算法部分中的适应度函数、交叉变异算子进行改进,使算法能够更加有效地避免陷入局部最优;最后根据旧种群和新种群每个对应个体的进化程度提出一种改进自适应的Metropolis准则,使模拟退火算法部分的染色体跳变更具有自适应性,利于算法寻优.对不同TSP实例的实验结果表明,与其他路径优化算法优化结果相比,所提出的IGSAA算法能够对不同TSP实例优化得到更优的旅行路径.
0 C- K- ?+ A4 G1 K5 C6 Y$ o% S0 i4 L5 P, Y5 v2 M0 U, _
|
zan
|