- 在线时间
- 468 小时
- 最后登录
- 2025-7-15
- 注册时间
- 2023-7-11
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 7456 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 2817
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1160
- 主题
- 1175
- 精华
- 0
- 分享
- 0
- 好友
- 1
该用户从未签到
 |
古代玻璃极易受埋藏环境的影响而风化,并且在风化过程中,内部元素与环境元素进行着大量交换,导致其成分比例会发生变化,从而会影响对其类别的正确判断。玻璃在炼制的过程中需要添加助熔剂和稳定剂,我国古代有常用的助熔剂有草木灰、天然泡碱、硝石和铅矿石等,如果添加的助熔剂不同,其主要化学成分也会不同。研究古代玻璃化学成分,对研究古人当时时期生活面貌、审美观念、 生产能力、工艺技术水平、物产交流情况等有一定的意义[1]。为此,我们建立单因素方差分析,BP神经网络,多元回归和聚类分析等模型对古代玻璃制品成分进行分析和研究。
/ @9 {2 y9 |% B# z/ v6 X% H9 q4 z# K1 E' Y- _
针对问题一,先将问题一分为三个小问。首先第一小问运用单因素方差分析模型,以表面风化作为因素,以玻璃类型、纹饰和颜色的情况作为检验指标,根据模型原理,得到玻璃类型的显著性p值为0.002,则有显著性影响,而玻璃颜色的显著性p值为0.070和玻璃纹饰的显著性p值为0.078,表现为无差异显著性影响;第二小问我们进行描述性统计分析,计算相关数值的平均数,中位数和标准差,进行折线图分析等,得到铅钡玻璃在风化后主要化学成分含量基本呈上升趋势,而高钾玻璃在风化后的主要化学成分含量基本上呈下降趋势的规律;第三小问利用BP神经网络,根据第二小问已得到的数据变化规律,总结出各个化学成分的变化情况,找到相关函数关系进而进行风化前的数据预测,具体预测值可在附录表19中查看。! {/ J2 \- `+ W. R' v, C
2 ^, l5 R9 g3 w针对问题二,同样先把问题分为三个小问。首先分析高钾玻璃和铅钡玻璃的分类规律,根据统计分析分为四类;接着针对铅钡玻璃和高钾玻璃进行亚类划分,先对这些化学成分的标志性数据进行分类汇总,以此作为亚类划分的依据,建立K-Means正在上传…重新上传取消 聚类分析模型,根据模型原理,将原来的四类划分为八个亚类,最终亚类划分结果已在图11呈现;最后进行数据的敏感性检验,也就是灵敏度分析,发现在添加30%的扰动时,铅钡未风化的数据准确率为92.3%,其他的数据准确度均为100%,这一定程度上体现了模型的准确性和合理性。7 r$ T, d1 M+ z
8 v! ]! v7 ]( {0 m8 U针对问题三,把该问题分为两个小问。需要先对未知玻璃文物的主要化学成分进行分析,鉴别这些文物属于什么类型,将表单3中的数据进行分类,初步得出这些玻璃的类别,接着对表格1和表格2中的数据进行回归分析,得到不同类型的玻璃各化学成分所占的权重,最终分类结果在正文中表13可知;然后将得到的结果进行灵敏度分析,即可以对这些化学成分中的某一个添加数据扰动,代入问题模型中,结果显示,在添加-1%至30%扰动时,分类结果均正确。
# t4 ^( ?3 ]3 [$ V# A. b9 T. j
9 F' V: f+ h$ d* D针对问题四,先进行不同玻璃类型的关联性分析,问题三中已得到不同玻璃化学成分所占的比重,我们将这些比重数据进行数据可视化,分析其中的关系,关联性主要体现为各化学成分的类别方面,具体在正文中可看;在解决差异性时,根据问题一所建立的单因素方差分析模型,以玻璃类型作为因素,相对应的14种化学成分作为检验指标,计算得到高钾玻璃在风化前后计算出来的p正在上传…重新上传取消 值大于0.05,说明高钾玻璃在风化后各化学成分之间的关联性变小,而铅钡玻璃风化后计算出来的p 值小于0.05,说明在风化后铅钡玻璃各化学成分之间仍然有较强的相互之间的影响。
5 V+ A. ], \4 \2 ^8 f V8 Q
, V9 A6 @: Y, b. K/ |
- z4 `0 O3 W/ T) g上面这篇文章来源于csdn中,原文链接:https://blog.csdn.net/qq_63438888/article/details/127413453, l/ W/ O+ V+ N
其中在github中的代码,也给大家看了,里面有作者本人的论文,大家可以借鉴一下; N; q) o. b% l6 q2 s5 l; B
# c ]/ }1 h7 B" @
6 W9 w$ _. @1 g. n3 R* o8 A2 H1 m+ z& D+ c: Q S
( _" L. }/ X% ^6 i* G
|
zan
|