- 在线时间
- 472 小时
- 最后登录
- 2025-9-5
- 注册时间
- 2023-7-11
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 7679 点
- 威望
- 0 点
- 阅读权限
- 255
- 积分
- 2884
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 1161
- 主题
- 1176
- 精华
- 0
- 分享
- 0
- 好友
- 1
该用户从未签到
 |
霍夫曼编码是一种变长编码技术,用于将符号映射到不同长度的二进制码,以实现数据的有效压缩。该编码方法基于符号的出现频率,频率越高的符号分配越短的二进制码,从而减小整体编码长度。0 @ ?1 R U7 M+ N w& s4 ^
编码过程:
4 x& D0 i& |1 x0 b4 a4 h
( M- b* y$ L; I j* V. A1.统计符号频率: 对待编码的符号进行频率统计,以确定它们在数据中出现的相对频率。% }, ]4 Z2 Y: ?9 P
2.构建霍夫曼树: 将每个符号看作一个节点,以其频率作为权值。通过反复合并两个具有最小权值的节点,构建一棵二叉树,直到所有节点合并为树的根节点。合并过程中,新节点的权值为被合并节点的权值之和。
( D8 C6 O) F0 \7 d. X3.生成编码: 从根节点出发,沿着左分支走为0,沿着右分支走为1,记录路径上的0和1,即可得到每个符号的霍夫曼编码。
- u1 a# p3 t) ?9 W- U* [" U& |# W7 e
译码过程:
- b, X0 \! @$ U. u7 ~# _$ {& P2 o9 `- H3 d' B
4.根据霍夫曼树进行译码: 从根节点开始,根据接收到的二进制序列的每一位,沿着树的路径向下走。当遇到叶子节点时,即可确定对应的符号。$ p+ _; k& ]: P: g7 N
# [5 o g5 K3 K2 A( F霍夫曼编码的主要优点是对于频率较高的符号使用较短的编码,从而实现了有效的数据压缩。3 k6 d! g! }* A' G8 _/ w7 B% K
" _1 Q* w0 j. b# h/ A9 S7 Y3 i! b! u F1 |; I3 |2 ?
具体实例结果如下:6 P( d5 L" r0 p- I$ Z
8 D7 ~- j" V m- J
2 g& o! k5 ?" e
. |9 o% a2 y: O, v0 B
1 B1 R, w) q# z! C' y' y3 h
5 |* D/ s6 v4 v. y |
zan
|