QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1698|回复: 0
打印 上一主题 下一主题

逐步回归

[复制链接]
字体大小: 正常 放大

1171

主题

4

听众

2749

积分

该用户从未签到

跳转到指定楼层
1#
发表于 2023-11-30 18:13 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
逐步回归是一种变量选择方法,用于在多个自变量中选择出对因变量具有显著影响的自变量。它通过逐步添加或删除自变量来构建模型,以找到最佳的预测模型。
! Z, q# h4 a0 X) k7 \逐步回归通常分为前向逐步回归和后向逐步回归两种方法。7 n# o, n( r$ W
前向逐步回归是从一个空模型开始,逐步添加自变量,每次添加一个自变量,直到满足某个预设的停止准则,例如显著性水平或模型的拟合优度。) `0 r* m) M- A
后向逐步回归是从包含所有自变量的完全模型开始,逐步删除自变量,每次删除一个自变量,直到满足某个预设的停止准则。5 q- ^3 y2 y( N
逐步回归方法的优点在于它可以帮助我们在多个自变量中选择出对因变量具有显著影响的自变量,从而简化模型并提高预测的准确性。它可以避免过拟合问题,并提供了一种自动化的变量选择方法。
# u+ ~" t1 ]: E5 m9 P4 m) X, @& ]然而,逐步回归也存在一些限制。由于它是基于逐步添加或删除自变量的策略,因此结果可能会受到初始模型的选择和停止准则的影响。此外,逐步回归可能会导致多重比较问题,因此需要进行适当的校正。
4 R" ]( H8 k) `/ r* [9 t总之,逐步回归是一种变量选择方法,可以帮助我们在多个自变量中选择出对因变量具有显著影响的自变量,并构建最佳的预测模型。
  M' x0 y1 B" h( k6 L- C, s8 q! q' n4 z: c/ t5 T0 c/ J3 g0 J6 }
) J8 n% I& i3 j) O* U5 C
zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-5-11 20:22 , Processed in 0.418969 second(s), 50 queries .

回顶部