这是一个 MATLAB 脚本,用于进行最小二乘法拟合。脚本首先要求用户输入已知点的 x 和 y 坐标,然后输入拟合的多项式次数 n。脚本使用最小二乘法拟合数据,并绘制了原始数据点和拟合曲线的图表。以下是对代码的主要部分的解释:+ E0 f4 H. }& T
function fp = fitpt() % P6 [; L- r% t. Z0 r! H % 最小二乘 ! P1 z$ }2 W' s! {* N % 基取 {1, x, ...} / Y5 Q6 j$ E: u4 c- ` % fitpt.m8 M9 N7 l- }, Y0 C* p
' Y0 I9 A- }/ ?; Q6 o& t6 M1 _ % 默认算例为课本:P65,例3.2, k; W! u& w k" a, w0 u% v5 G
% x = [0,1,2,3,4,5,6,7]$ K" M& x0 Z2 e/ g% e
% y = [3.95,6.82,9.78,12.91,15.74,19.26,21.73,24.07]5 q7 h) L. F+ R) I9 L# ^7 c% X* O
% 结果:P(x) = 4.005 + 2.936x 平方误差=0.6162 & v- X% j# m+ i: j ! L7 t8 q9 i& t2 y % MatLab函数:polyfit(x, y, n) 9 o; m: x$ {, [* v % ^2 b3 |8 M. o1 k% H6 l+ S s = input('<最小二乘>\n输入已知点的x坐标:(回车表示[0,1,2,3,4,5,6,7])\n', 's');4 u9 |- S6 K0 [: Z7 w; _" x! z m {
if isempty(s) / N7 v+ d" ?8 g: X# W s = '[0,1,2,3,4,5,6,7]';2 p. V. R" A1 e) g1 Z+ t
else 7 c3 S& P8 l' _6 V# ?# a if (s(1) ~= '[') 4 V+ ~5 t/ D3 L0 ~1 f7 A) n! R+ m% B s = strcat('[', s);1 C& ?, b* o }# _ ?
s = strcat(s, ']'); 0 U. _& Y+ K3 z( l end, i* e. B* w6 ^, V! s3 S/ F* l
end ! V- _: b' P3 N/ U# ~ x = sym(s); + c5 R# u2 [6 {* k0 m; E+ H& f - h- p. R- ^7 e J s = input('输入已知点的y坐标:(回车表示[3.95,6.82,9.78,12.91,15.74,19.26,21.73,24.07])\n', 's'); 0 U! p* Q8 y% ~- k if isempty(s) . c$ Q2 `4 }, \1 _3 I9 v s = '[3.95,6.82,9.78,12.91,15.74,19.26,21.73,24.07]'; * B& k; R7 e9 W. |- l3 j% D else + _. I. ]5 E% T if (s(1) ~= '['); n5 g; b2 E: ?6 z: K$ J
s = strcat('[', s);* _4 Z6 `& l- @$ @4 `9 P( S1 @# Z
s = strcat(s, ']');9 G5 |" U, G: h6 g
end ) M" V; x( ^1 j) } end $ t2 _5 p6 l- B' j y = sym(s); . v0 H$ w B& ^% F# G sz = size(x);3 h# u0 C) _! l; {3 U/ b" u- D9 L
sz = sz(2); ! j/ j' K1 U8 K( N; X n = input('输入多项式次数n:');5 M* W0 ?! B7 a% O8 v
if (n + 1 > sz)$ T& o {2 C7 y5 [2 ?4 a
n = input('多项式次数需要小于已知点个数,请重新输入n:');. i' K7 V; U% S
end3 }- _; y. M6 u5 l4 l1 |* \
if (n + 1 > sz) 5 W* ^8 j9 D$ | error('多项式次数不能小于已知点个数!'); * \, C9 ]: K$ o& C: Q* Q% ` end - M! q9 C+ u" U+ W: r fp = s_fitpt_p(x, y, n);' e* {7 k$ ?) X- q0 E. G
% ~4 e# N; o# [. a5 m
% 绘制原始数据点和拟合曲线 , @( H4 U7 x9 _- l- r plot(double(x), double(y), 'r*'). A% a+ U7 d' x7 h: w- H
hold on0 T b: u8 i% X1 U! r {( x
a = double(x(1)); + P- q+ L' J+ p+ B P# W b = double(x(sz));( P# d) U& \8 V2 ~
x = a:abs(b - 1)/100:b; + X3 b. t/ Z& N0 T5 a% @ y = subs(fp, x); - k; H* S: U* B8 i plot(x, y)4 Y, D4 I. X( r' d: o
end * t3 H, {' M3 K- N- j / Y7 W$ d& G* q# d8 O& K3 W O%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%( M; _( y2 D5 w2 N" n I
/ y! w( }; ]7 L, V. ?
function f = s_fitpt_p(x, y, n)" k$ O# ~% W5 x4 l. H9 g) M
% 用 n 次多项式实现的最小二乘法% m; N' @5 M. D( o' z
$ v5 w3 c% U' F) z' q. ]: x& h sz = size(x);+ `, \4 @: Z& l) [, c
sz = sz(2); 1 f% P! T4 T( R5 X A = zeros(sz, n + 1);9 m9 S' T/ r4 x4 k" \$ }# e, n
v = vh(n);$ l, `7 A, E9 `2 ~3 T; H( l5 |
for i = 1:sz 1 k( e% H- G4 O9 @; z+ ^7 V# i( C; j A(i, = subs(v, double(x(i))); ! m' }' p4 H) v end% S. l1 }8 J$ L+ b' U2 W, T
f = linsolve(A' * A, A' * y'); + M% t) m M) H f = vpa(f, 4); / V3 n: {3 z; Q1 x f = v * f; * @# J5 X/ A% }- {end 1 ~4 s7 s- f# \/ Z0 ]- U6 f' p0 y. k' ?1 W' A- H! q
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%" K) M g! V$ \: W9 {
. p: x |. g& H9 x- F0 b
function v = vh(n)1 V; F. ~& f' k
% Create vector in horizontal style, such as - B- O- J. f, ^) _ % v = [1, x, x^2, ..., x^n] 6 B* V. ]. J8 K8 i; l8 }- K m4 e! ~7 d8 J
if (n < 0 || n > 9)! |! j' v v" Q
error('Make sure ''n'' is in range of [0, 9]')1 e! c v _, b' `
end $ _4 k, F$ ~7 d1 r# X s = '';7 b2 G" y1 }) h( G
for i = 0:n% l! h/ Y2 q% \* k
s = strcat(s, ',x^'); h e! ^% d; \# q6 h
s = strcat(s, num2str(i));8 @" P/ [# L4 W' d
end# S2 _4 E* r0 G2 I4 _ s8 u
s(1) = '['; 4 p4 x' `+ Z @2 x sz = size(s); 0 V* \* w; l _1 V9 F4 X s(sz(2) + 1) = ']'; 0 k2 t9 E' [+ I/ _4 \: r ! \/ J a5 B, b. L g, `3 ~/ P v = simplify(sym(s));( m. u# m! ?* }) G
end 8 ^3 X; y8 K; @2 k3 _% x1 ^ % A, E# Y; m) ?这个脚本首先获取用户输入的已知点的 x 和 y 坐标,然后使用最小二乘法进行拟合。最后,脚本绘制了原始数据点和拟合曲线的图表。 % J3 S+ k9 Y# m# K5 c % Z S' \! @! L 6 \: p+ v J' `; {& \" n