QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1214|回复: 0
打印 上一主题 下一主题

强化学习

[复制链接]
字体大小: 正常 放大

1175

主题

4

听众

2866

积分

该用户从未签到

跳转到指定楼层
1#
发表于 2024-8-18 09:59 |只看该作者 |倒序浏览
|招呼Ta 关注Ta
在《强化学习》第二版的序言中,作者说明了自1998年首版以来,人工智能特别是强化学习领域的快速发展,使得出版新版本显得必要。第二版旨在继续提供清晰的强化学习核心思想和算法介绍,增加一些新主题并扩展已有内容,但不求全面覆盖该领域的所有进展。
0 C* y" m3 y- X: i$ N, q6 a3 u9 \0 s5 A# t
新版本在符号上进行了改进,以减少常见的混淆,强调随机变量(用大写字母表示)与其具体值(用小写字母表示)之间的区别。例如,状态、动作和奖励用St、At和Rt表示,而具体值用s、a和r表示。价值函数用小写字母表示,表格估计用大写字母表示。向量用粗体小写字母表示,随机变量仍然适用。作者也对现有的转移概率和期望奖励表示法进行了改进,以更好地反映奖励的动态特征。5 p$ Q& o' [" M( L5 Z
  V+ k6 }- O) j) M* c% u5 C7 w
5 U3 O/ M! d; v8 k: }" b( d( c

  S' n; L, `# H+ S

Reinforcement Learning.Sutton.pdf

18.44 MB, 下载次数: 0, 下载积分: 体力 -2 点

售价: 2 点体力  [记录]  [购买]

zan
转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
您需要登录后才可以回帖 登录 | 注册地址

qq
收缩
  • 电话咨询

  • 04714969085
fastpost

关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

手机版|Archiver| |繁體中文 手机客户端  

蒙公网安备 15010502000194号

Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

GMT+8, 2025-8-16 09:01 , Processed in 0.815094 second(s), 55 queries .

回顶部