Group 9 o }+ ^* Z- C9 |) x# J9 {
A group is defined as a finite or infinite set of Operands ! @. M6 p- B$ ~" _8 v$ B) r, D (called ``elements'') , , , ... that may be combined or ``multiplied'' via a Binary Operator1 z4 v" d: N2 l1 s% p; X' J) e
to form well-defined products and which furthermore satisfy the following conditions: 6 X ?: r B6 Z+ b2 o" O
1. Closure: If and are two elements in , then the product is also in . 9 q2 Q7 Z0 j _2 Y$ N4 _
2. Associativity: The defined multiplication is associative, i.e., for all , . ~5 b# K: Z l3 M. U
3. Identity: There is an Identity Element 7 H! G' z0 U8 k# q9 E (a.k.a. , , or ) such that for every element . - I" k0 K. e/ }
4. Inverse: There must be an inverse or reciprocal of each element. Therefore, the set must contain an element such that for each element of . 0 O+ E. B) T1 v
A group is therefore a Monoid % P- x6 m5 a7 T# ^; ]. b0 L/ m for which every element is invertible. A group must contain at least one element. 0 l8 B* J, J, {9 }% E/ r
- k; g' ~/ `1 n/ J- e
The study of groups is known as Group Theory; |# }, H; P6 j
. If there are a finite number of elements, the group is called a Finite Group , B- n+ ^& x! I and the number of elements is called the Order2 a7 g( X5 k/ X3 ]( l$ n
of the group. 5 B2 s$ k! n2 m: [ - F4 S0 L( B, X6 }2 b6 Q ]Since each element , , , ..., , and is a member of the group, group property 1 requires that the product : A9 {: P |& Z: s& j, f) K0 R
* h, M" @ \0 \4 d8 S
(1) 4 k9 g7 o3 Z: P1 X8 Y, L' U
5 G* _9 i' g* e6 k: Z0 l. s. _; B . I1 H* B$ R5 G9 @$ T! H. u4 p' {) ?' S8 N
must also be a member. Now apply to , % ^$ A; |! x$ _9 ^" G- ~ ( I' |. z+ q* V. s
. m, G% y- v- W& f' G( K
(2) 0 A2 @+ L: R9 K! g! W
4 ~/ `: W) b% ~$ C( G
+ [' y% D7 v, H) k/ S/ |9 D1 l2 v: w7 E6 L- r, O' t0 K. G* i7 ~
But & o7 R+ T% Z& }" P" z
9 ~" _$ `7 W1 @$ X4 E
l% E! M9 Z4 z0 F t0 j4 ]( t
* e" z6 s3 S/ L" a. l. d/ a6 Y
; H- i) k1 v5 k3 N
- V7 x) x; N+ d( C* E: _, m& i
(3)- G; U5 r1 w/ z
so * ~4 F- b9 L% ^! O; G& a' O
/ l$ b O/ l C3 v
(4) / Z5 x# ^# S9 k" H3 B. [
2 X9 u0 _ u. X" G! R; D. T) m* x* Z1 {) C. L
" L3 @+ n2 ^- m- ywhich means that ! V) P d: @1 V. n! p3 I& n( p& ~/ T