s = 2 ik/(E^(ik*11)*(ik*(Q[[1, 1]] - Q[[1, 2]]) + (Q[[2, 2]] - Q[[2, 1]]))) T = (s\[Conjugate])*s 为什么得到的计算结果是这样表示的------ (4 \[ExponentialE]^(-11 ik-11 Conjugate[ik]) ik \ Conjugate[ik])/(Conjugate[\[ImaginaryI] sin[\[ImaginaryI]] (-\ \[ImaginaryI] cos[3] sin[\[ImaginaryI]]-3 cos[\[ImaginaryI]] \ sin[3])^5+cos[\[ImaginaryI]] (cos[\[ImaginaryI]] cos[3]-1/3 \ \[ImaginaryI] sin[\[ImaginaryI]] sin[3])^5+ik (\[ImaginaryI] sin[\ \[ImaginaryI]] (-\[ImaginaryI] cos[3] sin[\[ImaginaryI]]+1/3 cos[\ \[ImaginaryI]] sin[3])^5+cos[\[ImaginaryI]] (cos[\[ImaginaryI]] \ cos[3]+3 \[ImaginaryI] sin[\[ImaginaryI]] sin[3])^5)] (\[ImaginaryI] \ sin[\[ImaginaryI]] (-\[ImaginaryI] cos[3] sin[\[ImaginaryI]]-3 cos[\ \[ImaginaryI]] sin[3])^5+cos[\[ImaginaryI]] (cos[\[ImaginaryI]] \ cos[3]-1/3 \[ImaginaryI] sin[\[ImaginaryI]] sin[3])^5+ik (\ \[ImaginaryI] sin[\[ImaginaryI]] (-\[ImaginaryI] cos[3] sin[\ \[ImaginaryI]]+1/3 cos[\[ImaginaryI]] sin[3])^5+cos[\[ImaginaryI]] \ (cos[\[ImaginaryI]] cos[3]+3 \[ImaginaryI] sin[\[ImaginaryI]] \ sin[3])^5))) 居然还带着Conjugate,很纳闷``望哪位大虾指点下,谢。 |