|
要用Extended Symbolic Math Toolbox中的Hermite polynomial mhelp H的说明如下 orthopoly[H] - Hermite polynomial Calling Sequence H(n, x) orthopoly[H](n, x) Parameters n - non-negative integer
x - any algebraic expression Description - The H(n,x) function computes the nth Hermite polynomial evaluated at x.
- The Hermite polynomials are orthogonal on the interval (-infinity, infinity) with respect to the weight function w(x) = exp(-x^2). They satisfy: infinity / | { 0 n <> m | w(t) H(n, t) H(m, t) dt = { | { 1/2 n / { Pi 2 n! n = m -infinity - Hermite polynomials satisfy the following recurrence relation: H(0,x) = 1, H(1,x) = 2*x, H(n,x) = 2*x*H(n-1,x) - 2*(n-1)*H(n-2,x), for n > 1. Examples > with(orthopoly): > H(2,x);
2 -2 + 4 x > H(3,x); 3 8 x - 12 x > H(10,5); 3275529760 See Also HermiteH
( r/ k8 O$ g/ Q
; K: s0 [& w. a v/ A
可是我用的时候却出现错误:
5 ?5 O9 o, J# r1 }$ q5 w! K" K with(orthopoly); ??? Undefined function or variable 'orthopoly' 请问这是怎么回事? |