去coons曲面的程序~~急求!!! 或者能根据下面的mathmatic改编成matlab的~~非常感谢!!!!! \!\(\[Phi]\_1[t_] := \(\((1 - t)\)\^2\) \((2\ \ t + 1)\)\n \[Phi]\_2[t_] := \(t\^2\) \((\(-2\)\ \ t + 3)\)\n \[Phi]\_3[t_] := t\ \ \((1 - t)\)\^2\n \[Phi]\_4[t_] := \((t - 1)\)\ \ t\^2\[IndentingNewLine] \(\((P_\[SmallCircle]Q_)\)[F_]\)[u_, v_] := \(P[Q[F]]\)[u, v]\[IndentingNewLine] \(\((P_\ \[CirclePlus]Q_)\)[F_]\)[u_, v_] := \(P[F]\)[u, v] + \(Q[F]\)[u, v] - \(\((P\[SmallCircle]Q)\)[F]\)[ u, v]\[IndentingNewLine] \(P1[F_]\)[u_, v_] := \[Phi]\_1 F[0, v] + \[Phi]\_2 F[1, v] + \[Phi]\_3 \((D[F[u, v], u] /. u -> 0)\) + \[Phi]\_4[ u] \((D[F[u, v], u] /. u -> 1)\)\[IndentingNewLine] \(P2[F_]\)[u_, v_] := \[Phi]\_1[v] F[u, 0] + \[Phi]\_2[v] F[u, 1] + \[Phi]\_3[v] \((D[F[u, v], v] /. v -> 0)\) + \[Phi]\_4[ v] \((D[F[u, v], v] /. v -> 1)\)\[IndentingNewLine] F[x_, y_] := 3 x\^3 + y\^2 + 1\[IndentingNewLine] p[u_, v_] = \(\((P1\[CirclePlus]P2)\)[F]\)[u, v]\[IndentingNewLine] Plot3D[p[u, v], {u, 0, 1}, {v, 0, 1}]\) \!\(9\ \((\(-1\) + u)\)\ u\^2 + \((2 + 3\ u\^3)\)\ \((3 - 2\ v)\)\ v\^2 + 2\ \((\(-1\) + v)\)\ v\^2 + \((1 + 3\ u\^3)\)\ \((1 - v)\)\^2\ \((1 + 2\ v)\) + \((1 - u)\)\^2\ \((1 + 2\ u)\)\ \((1 + v\^2)\) + \((3 - 2\ u)\)\ u\^2\ \((4 + v\^2)\) - \((1 - u)\)\^2\ \((1 + 2\ u)\)\ \((2\ \((3 - 2\ v)\)\ v\^2 + 2\ \((\(-1\) + v)\)\ v\^2 + \((1 - v)\)\^2\ \((1 + 2\ v)\))\) - \((3 - 2\ u)\)\ u\^2\ \((5\ \((3 - 2\ v)\)\ v\^2 + 2\ \((\(-1\) + v)\)\ v\^2 + 4\ \((1 - v)\)\^2\ \((1 + 2\ v)\))\) - \((\(-1\) + u)\)\ u\^2\ \((9\ \((3 - 2\ v)\)\ v\^2 + 9\ \((1 - v)\)\^2\ \((1 + 2\ v)\))\)\) |