原题如附件所示: ; h( A3 k3 A3 m) j6 c% |
* R" Q$ b3 e# Y M 题目要求判别病人的方法,以及确定主要的因素。
" n7 G" @* G- y首先对题目给出的数据进行处理,将表一前面30个数据每种元素求平均值得到病人体内各种元素的平均含量。
2 d1 y8 N5 F& W) }! z) A0 K# r再对表一后面30个元素求平均值,得到健康人体内个元素的平均含量,结果如下:
/ u4 I& C) E6 n% [2 t, i9 `2 _
* t2 k2 e0 Q3 q4 v+ Q
4 N$ \ q$ f( p9 X, X* E将ca k作为自变量,sorh作为因变量,进行回归。(得到的模型为线性概率模型,见《经计量学精要》,古亚拉提)
7 l1 y4 ^5 r( Q y5 j回归的代码如附件里的m文件所示: 9 c" V! z6 F* b4 v7 b. w F
8 O8 [/ g( }! S; ~& q1 b 运行的结果:
1 \" p6 t) p( Q2 D4 gb =
1 q M" O9 `7 X1 ]: `+ h+ E1 F* U 0.85943269933448 -0.00026521067844 0.00045376919071
1 q. C) [3 {$ w2 z, P7 o bint =
8 p! V/ K" c- M# ?$ O8 z 0.68868335685722 1.03018204181175 -0.00033716969449 -0.00019325166239 -0.00002536250203 0.00093290088345 / K( G8 C( D% k4 ]' V9 N
r = , l2 u g, o) |* ~( e* I9 D
0.24499009043804 0.24298645516293 0.22596382129192 0.26974523197013 0.26938499769464 0.20134048077000 0.26428218646615 0.24546068238966 0.24204749612136 0.26329869754702 -0.30239364378778 0.22418882468333 0.36151397969142 0.27800877719166 0.22562971091175 0.25817997058727 0.34088284102996 0.47584435732540 0.39924147789994 0.10818014268404 0.03268403910683 0.23266006146459 0.42213189599121 0.15295625201459 0.32936275116498 0.23035596133112 0.27508838782562 0.19186969392530 -0.04387393419007 0.37180169649244 -0.28881576082096 -0.54037252177113 -0.47247370212743 -0.49482518478078 -0.27629228737278 -0.08212896037942 -0.34347303417696 -0.60782985983678 -0.50802211576599 0.82648437263390 -0.60023746186573 -0.21743324654913 -0.59323300437026 -0.32095218604696 0.10204363196572 -0.41168153438852 -0.22705964801276 -0.40337580412737 0.50019536866747 0.05178812516079 -0.08624980592198 -0.28795869072225 -0.34221336479873 -0.47546878418730 0.13032287365765 -0.06744638245026 0.12456342765303 -0.33184299743823 -0.32238525982281 -0.46743958519949
/ k) S) T7 s% m* D% q* v, P rint = 3 u8 z4 n6 V! p1 K, x" Q9 b7 T+ a
-0.45268049797649 0.94266067885257 -0.45471901948541 0.94069192981128 -0.47070402952424 0.92263167210809 -0.42749772755413 0.96698819149440 -0.42530394206593 0.96407393745521 -0.49119576109825 0.89387672263825 -0.42929291658125 0.95785728951356 -0.45189766754183 0.94281903232114 -0.45372849228423 0.93782348452696 -0.43273992792445 0.95933732301849 -0.72468928783798 0.11990200026242 -0.47284729549112 0.92122494485777 -0.33268274520904 1.05571070459188 -0.41631507827795 0.97233263266126 -0.47200984810697 0.92326926993047 -0.43768034176985 0.95404028294440 -0.35542375701992 1.03718943907983 -0.21577903322429 1.16746774787510 -0.29583373430114 1.09431669010102 -0.57933084093047 0.79569112629854 -0.65245595836408 0.71782403657773 -0.46476517082366 0.93008529375283 -0.26956573150114 1.11382952348357 -0.53878440595437 0.84469690998355 -0.36446419214936 1.02318969447933 -0.46717750756131 0.92788943022355 -0.41904949253371 0.96922626818495 -0.50456761920479 0.88830700705539 -0.68119689782050 0.59344902944035 -0.32210495077523 1.06570834376012 -0.98555305629226 0.40792153465034 -1.22681878775805 0.14607374421580 -1.16263827940142 0.21769087514656 -1.18559446484527 0.19594409528372 -0.97334318994612 0.42075861520057 -0.77754513466812 0.61328721390927 -1.03962716392182 0.35268109556790 -1.28897250636556 0.07331278669200 -1.19830502970058 0.18226079816860 0.27837161793377 1.37459712733402 -1.28240289420555 0.08192797047410 -0.91514787090337 0.48028137780510 -1.27825077913241 0.09178477039189 -1.01775836842798 0.37585399633405 -0.58172439829518 0.78581166222663 -1.10573438258273 0.28237131380568 -0.92471005188033 0.47059075585482 -1.09775532080452 0.29100371254977 -0.13489900871102 1.13528974604595 -0.63713063617393 0.74070688649551 -0.78029430110123 0.60779468925727 -0.98542624488175 0.40950886343724 -1.03853703868559 0.35411030908814 -1.16731658432257 0.21637901594796 -0.55440318902529 0.81504893634058 -0.76249963681796 0.62760687191744 -0.55996646809892 0.80909332340498 -1.02839058696323 0.36470459208677 -1.01901501263124 0.37424449298562 -1.15831993205002 0.22344076165104 3 L S5 W* j' Z& A' `, M2 @
s =
" o2 p2 Q+ I/ Z 0.53107910778697 32.27784221875193 0.00000000042300 0.12340023479290
1 t7 x, H, y! L得到回归方程: 2 A* w/ r# s# s. _1 o2 g
sorh=0.85943269933448-0.00026521067844.*ca+0.00045376919071.*k + H7 h4 `% x8 y/ N$ c0 H
这就是我们需要的模型。 0 b5 `: ~! T+ J4 [
然后判断表二中的30个病例。
! h( i# m+ M* Z) |+ J, cmatlab代码如下:
% q: a1 J8 I& W( [ca=[323 542 1332 503 547 790 417 943 318 1969 1208 328 265 2220 1606 672 1521 1544 1062 2278 2993 2056 1025 1633 1068 2554 1211 2157 3870 1806]; k=[179 184 128 238 71 45.8 49.5 155 99.4 103 1314 264 73 62 40 47 36.2 98.9 47.3 36.5 65.5 44.8 180 228 53 77.5 134 74 143 68.9]; sorh=0.85943269933448-0.00026521067844.*ca+0.00045376919071.*k 5 r9 O* J5 M. z! H+ a; R
运行结果如下:
: b* Z2 F7 S6 j, m. ]sorh = 0 {0 ^" ?- J6 ~- j2 J/ j; o/ }2 {
Columns 1 through 5 1 g1 Y$ J1 N7 @ x5 Y
0.85499433533545 0.79918204271064 0.56425453206328 0.83402879546814 0.74658007076821 4 D# c; S: K1 b! o; Z
Columns 6 through 10
6 u; F0 W0 S7 u 0.67069889230140 0.77130142136514 0.67967325412561 0.82020036114713 0.38397110012925 . V8 C! R; B) a) Q% r) i
Columns 11 through 15 - ^ h1 ^" r5 U1 t( i; n7 n: N
1.13531091637190 0.89223866315360 0.82227702046971 0.29879868302170 0.45165511738824 8 r5 Y" }( o6 f( o* U
Columns 16 through 20
$ s" P3 z) X( V4 B$ a 0.70253827538617 0.47247370213094 0.49482518478434 0.59924224155178 0.27184534930907
. _# A5 C% L0 f" B2 |4 H Columns 21 through 25 * d# o, g6 c& O( g, @# _
0.09537902075506 0.33448840420565 0.66927020826128 0.52980303692384 0.60023746186819 ( i) a; M8 I' a+ ~# [
Columns 26 through 30 7 }7 ~# f: h6 i6 ]6 o, x0 t
0.21725173887874 0.59906763929878 0.32095218605194 -0.10204363195679 0.41172691131176 # }% S C' v3 r& Z
定义:
& L5 \% Y0 I7 w4 e凡是sorh值大于0.55的为患有肾病,否则为健康
2 t# X. |) K- O: o$ i+ l可以从结果中得到30个病例中的患病者。 & t2 C$ }8 o( B* v1 F! c& i% r& `/ B
! q4 a4 K F4 P+ a4 W
$ e' A4 w- N1 ^
[此贴子已经被作者于2008-8-12 13:57:50编辑过] |