- 在线时间
- 2 小时
- 最后登录
- 2017-7-6
- 注册时间
- 2009-11-10
- 听众数
- 5
- 收听数
- 0
- 能力
- 0 分
- 体力
- 41 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 17
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 8
- 主题
- 4
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   12.63% 该用户从未签到
- 自我介绍
- 200 字节以内
不支持自定义 Discuz! 代码
|
下面是一个简单的vrp linggo 示例
本帖最后由 catmice 于 2009-11-23 12:27 编辑
下面是一个简单的vrp linggo 示例
MODEL:
! The Vehicle Routing Problem (VRP);
SETS:
! Q(I) is the amount required at city I,
U(I) is the accumulated delivers at city I ;
CITY/1..8/: Q, U;
! DIST(I,J) is the distance from city I to city J
X(I,J) is 0-1 variable: It is 1 if some vehicle
travels from city I to J, 0 if none;
CXC( CITY, CITY): DIST, X;
ENDSETS
DATA:
! city 1 represent the common depo;
Q = 0 6 3 7 7 18 4 5;
! distance from city I to city J is same from city
J to city I distance from city I to the depot is
0, since the vehicle has to return to the depot;
DIST = ! To City;
! Chi Den Frsn Hous KC LA Oakl Anah From;
0 996 2162 1067 499 2054 2134 2050!Chicago;
0 0 1167 1019 596 1059 1227 1055!Denver;
0 1167 0 1747 1723 214 168 250!Fresno;
0 1019 1747 0 710 1538 1904 1528!Houston;
0 596 1723 710 0 1589 1827 1579!K. City;
0 1059 214 1538 1589 0 371 36!L. A.;
0 1227 168 1904 1827 371 0 407!Oakland;
0 1055 250 1528 1579 36 407 0;!Anaheim;
! VCAP is the capacity of a vehicle ;
VCAP = 18;
ENDDATA
! Minimize total travel distance;
MIN = @SUM( CXC: DIST * X);
! For each city, except depot....;
@FOR( CITY( K)| K #GT# 1:
! a vehicle does not traval inside itself,...;
X( K, K) = 0;
! a vehicle must enter it,... ;
@SUM( CITY( I)| I #NE# K #AND# ( I #EQ# 1 #OR#
Q( I) + Q( K) #LE# VCAP): X( I, K)) = 1;
! a vehicle must leave it after service ;
@SUM( CITY( J)| J #NE# K #AND# ( J #EQ# 1 #OR#
Q( J) + Q( K) #LE# VCAP): X( K, J)) = 1;
! U( K) is at least amount needed at K but can't
exceed capacity;
@BND( Q( K), U( K), VCAP);
! If K follows I, then can bound U( K) - U( I);
@FOR( CITY( I)| I #NE# K #AND# I #NE# 1:
U( K) >= U( I) + Q( K) - VCAP + VCAP *
( X( K, I) + X( I, K)) - ( Q( K) + Q( I))
* X( K, I);
);
! If K is 1st stop, then U( K) = Q( K);
U( K) <= VCAP - ( VCAP - Q( K)) * X( 1, K);
! If K is not 1st stop...;
U( K)>= Q( K)+ @SUM( CITY( I)|
I #GT# 1: Q( I) * X( I, K));
);
! Make the X's binary;
@FOR( CXC: @BIN( X));
! Minimum no. vehicles required, fractional
and rounded;
VEHCLF = @SUM( CITY( I)| I #GT# 1: Q( I))/ VCAP;
VEHCLR = VEHCLF + 1.999 -
@WRAP( VEHCLF - .001, 1);
! Must send enough vehicles out of depot;
@SUM( CITY( J)| J #GT# 1: X( 1, J)) >= VEHCLR;
END |
|