|
原版英文书 第二版
4 E+ V7 }; ?; c) s! `contents:
9 \' e' g" g) ^. v) l) pPreface to the first edition page viii
8 E' a9 o j7 E" Y5 ^$ pPreface to the second edition xi& K4 N7 W6 [- b, V
1 Introduction 1. q- _! N7 |$ `0 E$ b6 p+ C
2 Parabolic equations in one space variable 7
c7 u! q9 E. z) o7 `, p2.1 Introduction 7
5 [7 u8 t4 D& z( P6 u4 ^2.2 A model problem 7
% l. V* I% a8 r( u4 o2.3 Series approximation 9* x- s0 J2 y- a; k+ [
2.4 An explicit scheme for the model problem 10
$ x8 M) F; k1 W2 w" u* I3 x2.5 Difference notation and truncation error 12
% k& r8 C! E0 {. d4 K2.6 Convergence of the explicit scheme 16/ h8 L* _0 H: F
2.7 Fourier analysis of the error 19
, A6 n0 E0 R9 u9 F7 ?2 T( U1 J2.8 An implicit method 22. v4 _4 a4 P8 L9 I
2.9 The Thomas algorithm 24+ Y6 C0 |/ C+ s3 Z4 y9 o/ ?
2.10 The weighted average or θ-method 26( \3 A, y+ o# V. F9 _
2.11 A maximum principle and convergence
% s/ j+ x/ h! E* ?0 yfor μ(1−θ)≤ 1: O3 c+ Q4 z9 N7 L7 d" p
2 33
+ g( Z5 M- G4 m6 R- ^7 N J' y( E9 D7 O9 `2.12 A three-time-level scheme 38
- K5 N: E! F, y" d2.13 More general boundary conditions 39
1 S/ P/ E' g9 {( G2.14 Heat conservation properties 441 B/ j# a( k3 X( v Y
2.15 More general linear problems 46
7 f6 P- ]1 _: E0 P8 t0 `2.16 Polar co-ordinates 52# x3 M6 l4 O6 w. v1 ^
2.17 Nonlinear problems 547 t2 a. N5 M" ^. N7 d
Bibliographic notes 564 t4 K0 E3 H0 U: {, o4 d
Exercises 56: l8 b7 G; a, R1 W
v
/ I( Y o: a1 {5 n- rvi Contents7 b5 P1 G3 h/ X% z, _ }
3 2-D and 3-D parabolic equations 62' c' n1 _. b0 M/ G* Q' v
3.1 The explicit method in a rectilinear box 62
}, E: Z, E( y& P3.2 An ADI method in two dimensions 649 c5 _- ?( W0 d3 [( v4 B9 W6 m& }
3.3 ADI and LOD methods in three dimensions 70$ q% d3 @& L1 d7 j" _, ?
3.4 Curved boundaries 71+ k0 D8 n& q( x0 T) O, q
3.5 Application to general parabolic problems 80$ S+ `9 F1 V5 k$ b% l5 Y9 m7 h
Bibliographic notes 83$ F! @" Y: o: }* e8 M: a
Exercises 83; K. ?6 G3 b. ~4 {4 q. I! j @
4 Hyperbolic equations in one space dimension 86
( U/ {+ K9 T9 Z$ V" o* }4.1 Characteristics 862 O7 k% k0 r1 [) w
4.2 The CFL condition 89/ d0 H. C4 l+ G! f/ m8 {
4.3 Error analysis of the upwind scheme 94
# ]! Z& d' F e4.4 Fourier analysis of the upwind scheme 97' S6 J/ u8 ?# e6 m/ L" w( w
4.5 The Lax–Wendroff scheme 100" L7 {2 b' ]# ~/ x- @
4.6 The Lax–Wendroff method for conservation laws 103
% n8 E, e5 _' ?' e3 C1 X3 s2 b# {4.7 Finite volume schemes 110( Z- S! `1 |1 C% E1 M+ N: {
4.8 The box scheme 1166 U& v; T: M8 U1 S1 F) d+ e
4.9 The leap-frog scheme 123
; p c. u* R' A, c* v7 W1 I4.10 Hamiltonian systems and symplectic
4 F; J: l) g% M4 {/ sintegration schemes 1280 m0 Z( u9 m' j. r' R M0 c5 k7 z! Q
4.11 Comparison of phase and amplitude errors 135: S# U1 X: r' H s: K6 Z9 V: Y+ l
4.12 Boundary conditions and conservation properties 139
8 f( \- ?& ~. N, S0 Y: T8 |4.13 Extensions to more space dimensions 143
$ J2 F; o0 p* R9 a9 m. rBibliographic notes 146% K O( y8 X" M: @. g( J% ^& U
Exercises 146
# k# U$ z5 {# T% j7 C4 P5 Consistency, convergence and stability 151
( Q, v* A* H: I9 B5.1 Definition of the problems considered 151
; f- w9 i7 E. s! y5.2 The finite difference mesh and norms 1521 d% `1 i9 z4 Y% s1 `% Z ?
5.3 Finite difference approximations 154
' A5 ? q8 ~! v5.4 Consistency, order of accuracy and convergence 156
( ?% ]/ _% d' N# }5.5 Stability and the Lax Equivalence Theorem 157' j* l" X0 \. U( _5 r, c
5.6 Calculating stability conditions 160
/ J, G" q7 A( i5.7 Practical (strict or strong) stability 1665 [& @3 A% K8 J7 f3 j6 W$ b: {
5.8 Modified equation analysis 1696 s8 D$ g, u5 r9 s; }4 w: P) ^
5.9 Conservation laws and the energy method of analysis 177
! X/ C) t1 X2 W) J! g% x- [1 R" u5 h5.10 Summary of the theory 186
* q( t0 V; Q( D1 _* H3 k- RBibliographic notes 189; y6 k' |% a* t8 L+ H) b
Exercises 190+ A" S: i. X/ v, p, M
Contents vii
. w2 M! x7 M+ P5 S4 D9 L6 Linear second order elliptic equations in" k9 F# T" d9 R0 Y" i6 ?3 g/ p
two dimensions 194
1 J8 _& ?! ]- Q, C2 l9 s0 U$ A2 `6.1 A model problem 1948 o1 q" ~0 I3 H1 N. [& D4 x; V
6.2 Error analysis of the model problem 195
0 W3 i d, S4 f/ w5 N6.3 The general diffusion equation 197
6 E+ [) A( a* B' Q6.4 Boundary conditions on a curved boundary 199 i6 g& \- r& Y1 ~0 S$ D0 H
6.5 Error analysis using a maximum principle 2037 O% N8 t" u. K4 Y& b
6.6 Asymptotic error estimates 213
3 v' E1 ^9 @7 A7 ^% e6.7 Variational formulation and the finite
: r1 w9 e' U! d+ f+ y; Delement method 218$ x/ P' @0 M6 s/ U! E
6.8 Convection–diffusion problems 224
: y# \, l+ c5 _; \1 p6.9 An example 228. U2 O, z. `; ^# p
Bibliographic notes 231
: e: S# W# `& D; g; [Exercises 232 @3 `6 e0 }) c5 [% _
7 Iterative solution of linear algebraic equations 235
) x' U( B1 g. V; F9 n2 p7.1 Basic iterative schemes in explicit form 237
' T/ I& D8 `! M8 C* ?7.2 Matrix form of iteration methods and8 S I0 T$ M9 Z( q& p+ m2 X) D
their convergence 239) t; a* ?; f$ S6 [# M
7.3 Fourier analysis of convergence 244# ]7 ]8 c3 \; M) S
7.4 Application to an example 248* k) J9 j/ E& X- [( E+ v0 L
7.5 Extensions and related iterative methods 250* i T! `# m" G
7.6 The multigrid method 2527 a5 W4 U( m5 d0 Z4 Q! L
7.7 The conjugate gradient method 258. N* o4 \8 x$ n8 |: t+ t& x/ Z! l6 d
7.8 A numerical example: comparisons 261
) F6 G5 q6 M% {7 YBibliographic notes 263
1 M- l( u* Y- O& z0 KExercises 263
# f3 t1 Z# R8 A& J9 S$ N- SReferences 267( i+ ~' y: \: Z; U' ` Z* O+ ~% g
Index 273 + f* [! P/ P; {
& N2 C/ V- b8 @$ F
5 ]2 J" U2 D( M# D! c
/ X+ j7 v$ Q5 p7 W
% i; m" e( Q& E3 r |