- 在线时间
- 63 小时
- 最后登录
- 2019-5-3
- 注册时间
- 2004-5-10
- 听众数
- 442
- 收听数
- 0
- 能力
- -250 分
- 体力
- 10122 点
- 威望
- -12 点
- 阅读权限
- 150
- 积分
- -586
- 相册
- 6
- 日志
- 10
- 记录
- 10
- 帖子
- 2003
- 主题
- 1253
- 精华
- 36
- 分享
- 8
- 好友
- 1292

复兴中华数学头子
TA的每日心情 | 开心 2011-9-26 17:31 |
|---|
签到天数: 3 天 [LV.2]偶尔看看I
- 自我介绍
- 数学中国网站(www.madio.cn)是目前中国最大的数学建模交流社区
 群组: 越狱吧 群组: 湖南工业大学数学建模同盟会 群组: 四川农业大学数学建模协会 群组: 重庆交通大学数学建模协会 群组: 中国矿业大学数学建模协会 |
赛程安排
9 G4 L8 f: T/ \, }6 f; [0 |
% p& \3 q$ s1 A0 k) j崔凯 杨飞- S8 [- J' K0 [) W
% I Q* K$ o' b* x, U
本文通过建立数学模型研究了赛程安排问题。首先,我们运用了“排除-假设法”给出了5支球队参赛的赛程安排,并使各队每两场比赛中间都至少相隔一场。然后,在公平性的前提下,给出了各队每两场比赛中间间隔的场次数的上限,我们按参赛队的队数N分两种情况讨论:(1)当N是偶数时,运用“最大号固定右上角逆时针轮转法”;(2)当N是奇数时,运用“最小号固定双向轮转法”。得出的上限公式均为:上限=[(n-3)/2]。最后,考虑到体现公正性指标的不唯一性,我们又在模型优化中给出了其他指标,并用这些指标衡量了我们排出的赛程的优劣。) m* N9 {0 n3 `5 R' s
( B4 E S* o2 E @. ]' ?
赛程安排.pdf
(306.2 KB, 下载次数: 1010)
& V0 T% |, j+ x$ O- d0 @
* s) }5 M/ h! }; R9 m( _球赛赛程安排的模型求解
: T/ ~$ z. \8 k" k4 \) C# g/ X: s8 ]# a0 O' W E
张佳 谢春河
+ U* V0 _! U/ M+ _( E- i' z* ?1 H8 E( z2 j- }$ u1 J- \
本文针对n支球队之间举行单循环赛的赛程安排这个实际问题,同时考虑到整个赛程的公平性及优劣情况,对于n的奇偶性不同,根据现行赛程安排方法,提出了相应不同的数学模型。当n为偶数时,我们采用了“循环组合法”进行求解,得到上限为n-4/2,从而得到n=8时的上限为2;当n为奇数时,我们采用了“蛇形回转法”对赛程安排方案求解,得到上限为n-3/2,从而得到n=9时的上限为3。在评价赛程安排公平性方面,我们采用方差检验对模型进行评价,得到相对合理的结果。9 S' C1 `2 s" Y0 t3 u- v
, F8 R& ]/ Z- O+ e9 s. K
球赛赛程安排的模型求解.pdf
(254.43 KB, 下载次数: 761)
! N/ `1 d* o% F: I
' q$ N# ?: b! w! d0 n& K( m
; p) @+ ?, W) N赛程安排中的数学问题; g# B! @" E$ i4 a4 M I' ? ^% m
" h0 b, T \5 |% G+ L. f4 S
姜启源
# |( G( l2 |2 B' @0 G4 N% C
" \* H. w7 w/ l6 }. a本文结合论文评阅中发现的问题,对赛程安排这道题目给出了一般性结果,并提出可进一步研究的问题。
! n5 T/ m4 J9 \+ ]) t* |4 w! n& |: v' E) ?& N c
赛程安排中的数学问题.pdf
(184.99 KB, 下载次数: 587)
|
zan
|