- 在线时间
- 11 小时
- 最后登录
- 2012-1-13
- 注册时间
- 2011-12-22
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 418 点
- 威望
- 1 点
- 阅读权限
- 30
- 积分
- 204
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 137
- 主题
- 43
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   52% TA的每日心情 | 开心 2012-1-13 11:05 |
|---|
签到天数: 15 天 [LV.4]偶尔看看III
|
对着S4群表看下面就能懂了,我曾把26字母乘群表带身上2月多
+ D! d! A; y* H- n: B0 {* ~0 v/ |; g/ Y" D
S4 := Sym({ "a", "b", "c", "d" });+ L2 U f9 A b% Z1 @( X
> S4;0 p0 \7 E# s$ P( C
Generators(S4);
& G4 R, s' ^$ j7 [: T* k' JIsAbelian(S4);不是交换群0 K) q+ x# @& Y d& @1 U1 }1 s7 s
Subgroups(S4: Al := "All") ;列出所有子群
0 _6 m8 }: C, Q; Z/ K* @% f Subgroups(S4: Al := "Maximal") ;列出所有极大子群& a) N8 g* c, ^
, h! ^+ m$ x8 S, q9 t mSubgroupClasses(S4);
7 |/ B+ F% I( N% k* A8 I! G
; L2 L# m, C# f- h |6 w8 R% sNormalSubgroups(S4);8 G; ?! m) a7 m5 V
AbelianSubgroups(S4) ;9 h) U; x: k m0 v1 v
MaximalSubgroups(S4) ;
3 M$ L% x9 Q8 v" t& T L! w2 R# r
! R* `- \' r2 ]SubgroupLattice(S4);成格,你可画下这群包扩子群的图
; R: ] p4 D: h
2 y( K- W- T: A/ F6 F3 G5 N5 TGSet(S4);
) A4 N% {# f; c0 QConjugacyClasses(S4);2 a- u( m" \. o( k t! z
NumberOfClasses(S4) ; 5类
) s6 `' y+ n. [/ @6 t* E. r9 p4 m6 h% P/ P5 ]$ f5 F$ g( a7 a
Symmetric group S4 acting on a set of cardinality 4
/ o0 T" G o- f3 s+ L! m& W4 XOrder = 24 = 2^3 * 3
2 L( c* M+ {: T; c; v{
. v5 F; P* e$ y: K. X0 @ (c, b, a, d),4 a' U; c9 f9 x+ K
(c, b)6 u; r0 @( ?' L( A' f2 l9 H {
} 两生成元
: U2 X T4 ~5 Z+ A: u* N/ l. Y5 hfalse
4 b6 \! ~$ p4 \% b- O' _8 L' ]Conjugacy classes of subgroups 子群共扼类
; i# ?) _ n) _8 T ?9 ~- l------------------------------
% R3 ^1 b7 l+ ^+ y; V$ @* x$ F' a) G4 ~
[ 1] Order 1 Length 1
4 `+ p0 m, W+ D V- s0 b Permutation group acting on a set of cardinality 47 E: ^( s6 \1 r1 s7 Z
Order = 19 _! c- P8 N1 q p
[ 2] Order 2 Length 3& ~* e$ G$ s7 N+ v3 A
Permutation group acting on a set of cardinality 4( J2 E; R; h! `
Order = 21 t. y) T: X6 H& Z4 K& C5 [0 E+ X% z
(c, d)(b, a)
1 r2 M: g _/ }5 R9 N- N[ 3] Order 2 Length 66 D8 f% ?( Z4 H' j4 q1 U
Permutation group acting on a set of cardinality 41 o, {" q: m7 H( u5 _. [% I
Order = 21 i9 `+ [+ v/ n) ]% v
(a, d); d$ N4 o4 Q4 E
[ 4] Order 3 Length 4' N) Q) b! c- x
Permutation group acting on a set of cardinality 4, ^" t6 R% |' v
Order = 3
; M4 S9 f- B! i0 r (b, a, d)
5 W5 \$ s6 L" I+ q2 n& l0 K. k6 {2 U[ 5] Order 4 Length 1( Q3 u; w8 S- M
Permutation group acting on a set of cardinality 4
3 s# h( m! i" r' B) N* Q8 M. [ Order = 4 = 2^2+ a! S$ G% }4 Y5 v) U
(c, d)(b, a)
& u2 U& e: t& M: P8 z$ m7 W; b (c, a)(b, d)3 a! h. [6 W. w' z. |
[ 6] Order 4 Length 31 p% Q* a: F0 G1 C
Permutation group acting on a set of cardinality 4! f. P$ E! Q5 K2 R; Y3 y
Order = 4 = 2^28 w% I% j; R) x* w
(c, d, b, a)! m3 e v9 ]! [. c8 Y
(c, b)(a, d)
/ G$ {( Z. q( V- O7 N9 Z6 h[ 7] Order 4 Length 3
( ?0 N" M5 W% Q7 X$ p Permutation group acting on a set of cardinality 41 ` Q! E- e( p1 C: _
Order = 4 = 2^22 e5 Z' J9 {8 z, A2 M
(a, d)8 L9 T, _1 v- I
(c, b)(a, d)
! Z- W; B9 f. s# L[ 8] Order 6 Length 41 r+ a: _- }! ~7 T! ^1 q' T
Permutation group acting on a set of cardinality 46 j8 z9 O& l+ Y
Order = 6 = 2 * 30 B" M% x/ F: S0 F
(a, d)/ b5 W: |/ V! g/ n6 t+ O% Z# K0 Z
(b, a, d)
& S! q) n7 h: D; q! `, K[ 9] Order 8 Length 38 F: \. ]7 O$ N5 s1 ]. W0 B4 n
Permutation group acting on a set of cardinality 48 r2 \4 e1 l# ?; [
Order = 8 = 2^31 W; S7 M2 { }2 ]9 {7 ?
(a, d)
( c) V% j: w9 Q (c, d)(b, a)
, U5 k8 D; G$ M# G: u" C (c, a)(b, d)" k0 `2 o: U6 i4 [$ P9 T# W( t! c
[10] Order 12 Length 1
4 t8 [4 Y6 n0 p% q7 ]" l; L. z Permutation group acting on a set of cardinality 40 `, I2 p2 m. {/ F
Order = 12 = 2^2 * 3
. E- [; l6 y& w5 ~* V& Z (b, a, d)9 e2 L0 A' x# X5 E$ N {1 j
(c, d)(b, a)! D* _# M+ J' b& F6 E' H0 \
(c, a)(b, d)
: U& i4 a* Z0 H: r9 p2 _[11] Order 24 Length 1
8 X- D8 T) i! w; f$ ]- b1 ]. P Permutation group acting on a set of cardinality 4
. c" t( B8 I: B) L Order = 24 = 2^3 * 37 `3 ?! t+ r9 q; l- l
(a, d)/ R, p: \( b! }& P- L# N
(b, a, d)
* Y1 j: k% R6 ^5 Y/ u (c, d)(b, a)/ M# e6 i0 q, v. @5 _. P& i: R4 v5 c
(c, a)(b, d); _9 T$ b- L5 P8 _
Conjugacy classes of subgroups& S8 o$ T& u. z1 t7 J
------------------------------7 h8 ^' a! i O% M; G
, @2 ~% S% {) r+ j3 e
[1] Order 6 Length 4, P) i, }- H( o$ j6 M1 X9 N
Permutation group acting on a set of cardinality 4/ }5 n) h; N* {% g$ Z" k- J
Order = 6 = 2 * 37 U+ l. C1 Q' K! ~4 o# y
(a, d); T3 K4 S) Q# f/ k: w! E9 v$ w
(b, a, d)
' H+ l' b3 o1 O& p; |* `' m[2] Order 8 Length 3
. Z8 n0 I. W! d4 Z) `. f Permutation group acting on a set of cardinality 4
! m1 G9 @/ A' c; Y Order = 8 = 2^3$ A- M; B Q% k0 P! n0 [! r
(a, d)* ^- ?) ?1 [- c) w8 ?/ V8 j, r
(c, d)(b, a)8 f" T" {5 W- T4 ~( n
(c, a)(b, d)
) @; D9 d* J+ {[3] Order 12 Length 1# `4 S$ U& V; F6 i- E& H& U
Permutation group acting on a set of cardinality 4
9 a( m0 M; t% F& _ Order = 12 = 2^2 * 3' O$ `# b0 f1 x/ J3 F
(b, a, d)
/ V+ t/ p5 s8 r" _9 [# w (c, d)(b, a)
3 Q* T1 s2 m) z: o& Y: D (c, a)(b, d)
. | y: D: F+ G% b/ _& gConjugacy classes of subgroups
# B3 f# w$ p6 E5 z2 W% {2 `------------------------------* v& o4 z4 o0 K5 Y; w
: R j$ h! Y# J* Z! h ~9 p/ D
[ 1] Order 1 Length 1
. Z+ G0 ]. D* O Permutation group acting on a set of cardinality 4
" E' C) A3 a' ~! Z' p8 H Order = 1. p# g& ?7 R. C4 D
[ 2] Order 2 Length 3
4 N) e+ W: s7 \* w Permutation group acting on a set of cardinality 45 |( h5 p1 J) x; [
Order = 2
) C6 P! B S" J4 [( E (c, d)(b, a)
3 [8 X4 ]; D. P# }6 v[ 3] Order 2 Length 6' c2 ?+ [/ ]) s" i) W
Permutation group acting on a set of cardinality 47 f' u3 M, E3 }7 O: o2 F
Order = 2) x. y9 s- _7 W: v6 G
(a, d)
: C- x2 H. F* P# A" G4 I w& X! d[ 4] Order 3 Length 4
+ w" |5 f! Q: {6 H Permutation group acting on a set of cardinality 4
I3 X4 i" s# R5 @+ {( J. A Order = 3! S* K, L h! W& j/ ~
(b, a, d)
/ y; S5 F3 J6 b2 }: x[ 5] Order 4 Length 12 c+ a, Z; `" S
Permutation group acting on a set of cardinality 4
% z6 @( Q: |1 u; C; G; k8 p4 {' [: J Order = 4 = 2^2
1 Y+ G) B9 G8 V1 ?; M (c, d)(b, a)* \4 M$ U9 W! t6 e
(c, a)(b, d)
: D9 g) o) P2 ~! F e) T; x: A! B[ 6] Order 4 Length 3
: F* H( ~% |+ v& [. M Permutation group acting on a set of cardinality 4( D" Z. e& G, Z
Order = 4 = 2^2
- F# B$ `! d0 f0 P% h7 Y (c, d, b, a)
" M0 C" j& Y# |% J4 D (c, b)(a, d)$ S( m5 c4 u* t/ @* o
[ 7] Order 4 Length 3
2 I* K- F7 C" f" p' m Permutation group acting on a set of cardinality 4
7 F2 ~8 r; j3 [, d Order = 4 = 2^2& ]! W- V: F) i/ Y1 C( X
(a, d)
8 {6 m. P# I5 A% L9 v (c, b)(a, d)
# L! B$ E( p V$ h[ 8] Order 6 Length 4
6 w/ w! `3 V. K; E Permutation group acting on a set of cardinality 4
9 U/ L5 r' c. @3 u& k3 q) r Order = 6 = 2 * 3
! Q% U3 ?+ U6 R: X (a, d): t' Q. C7 ^6 M( d j$ Z
(b, a, d)' m4 O7 v$ F, t, P, a% h
[ 9] Order 8 Length 3
7 I& L# ^6 O$ G Permutation group acting on a set of cardinality 4
% T# C0 S5 g+ G9 U# p% r Order = 8 = 2^33 h# z+ _( K* F
(a, d)
8 ^' i# p1 @/ t+ ?8 c (c, d)(b, a)1 |1 @3 \ \+ \3 Q, G- M+ S9 Q2 T
(c, a)(b, d)8 Y$ R( x( Q- N4 c$ @3 w" U4 ?0 s0 T
[10] Order 12 Length 18 ~7 D# i$ _# t1 u% j, M
Permutation group acting on a set of cardinality 44 `& |1 O1 r. [) z! j- l# Z7 E
Order = 12 = 2^2 * 3- ]/ W3 k' W3 o! c, |# R
(b, a, d)1 Q1 K; f, Z* `, Y" g( l
(c, d)(b, a)% ^) n) z2 _! g7 K6 X/ j1 c7 z
(c, a)(b, d), ]4 g3 P6 d n) _8 i9 e
[11] Order 24 Length 19 F) D; x& ^' q2 G4 w7 z! R% W
Permutation group acting on a set of cardinality 4% Z% q$ g; P$ p! ^; v# K k- r
Order = 24 = 2^3 * 3
8 D! x$ e8 }: e9 q! s (a, d), l& s- L+ u) m: `+ `5 S
(b, a, d)
8 f) j% @! Y3 o* Y+ r* o) v" { (c, d)(b, a)1 u' ~! Y" m$ A$ ]% n$ U/ L
(c, a)(b, d)
5 B" Z5 n" c. l; \1 fConjugacy classes of subgroups4 h' k- j5 x i0 n
------------------------------# Q3 g2 ~5 r* V t0 ]
- q: m3 ~& ~; A' ]! G9 Y1 {
[1] Order 1 Length 18 S7 F, k/ k/ n! _4 |' e
Permutation group acting on a set of cardinality 4) Y! E5 A3 g2 _5 \6 ~) Y
Order = 1
5 R) |( m! ~9 m( w[2] Order 4 Length 1
) g' W" Y1 v: B' X* t: Z Permutation group acting on a set of cardinality 4. u) c6 k" a0 ~" ~
Order = 4 = 2^2- k& C' |! T! w! A/ G7 }2 M
(c, d)(b, a)
' ^+ C* c7 a9 s/ f2 k- N' h (c, a)(b, d): R2 o" }1 ]# X
[3] Order 12 Length 1- U! F0 @+ Z9 p0 t
Permutation group acting on a set of cardinality 4
9 b' ~3 v& V- G! G( L Order = 12 = 2^2 * 3( z& I* D7 T; L r
(b, a, d)
' {8 N3 E+ j+ J: ?1 z, s( W! r3 f. ^ (c, d)(b, a)3 A/ p- R9 v9 C# L. G U2 v# {
(c, a)(b, d)
( I8 j. G$ n; Q; H: z: t; k8 o[4] Order 24 Length 1% D0 g8 y/ p% U, S8 a7 |/ {
Permutation group acting on a set of cardinality 4; {/ ~5 j& w: K/ `' W
Order = 24 = 2^3 * 3
" y4 J8 z7 n$ y3 E6 g (a, d)
- q! ^9 h' K" `4 q. t/ l+ C (b, a, d)
. z- e' I( {/ d$ Y. N: n O2 x" f (c, d)(b, a)9 }( `" n; j, h# U6 O: c- v9 y
(c, a)(b, d)7 s; d0 x) y0 r7 Y
Conjugacy classes of subgroups
. d+ O: l- L* D* b1 B. ]$ d, i; M------------------------------- \, |, F0 _0 S l( a- i
; C# x* U1 [7 e& `) Y5 U' s& X
[1] Order 1 Length 1* q. |* A, p" [0 K
Permutation group acting on a set of cardinality 4
+ x8 W) e+ W& O( v! h0 @ Order = 10 q0 f* l& w+ n9 c. o
[2] Order 2 Length 3% L7 T0 X. G( ]; z$ w7 _
Permutation group acting on a set of cardinality 4+ g: K' H! B$ i4 y
Order = 23 y* U1 b+ D' R6 u! ~
(c, d)(b, a)
' r! T! X0 O+ T8 z" g8 E[3] Order 2 Length 6( p3 W/ F0 K# Z* t1 d7 @
Permutation group acting on a set of cardinality 4
5 j+ t; L8 D! q( J' }8 g* [ Order = 2
( j) O v z# T- v (a, d)
+ w! ], i8 a! _5 [# ?6 i5 T' S& ^[4] Order 3 Length 4) M! F" X' }; h* }$ P& {
Permutation group acting on a set of cardinality 4% X g: [; i- w! u) b b' @
Order = 3
% I3 Z& \* F/ _' n' j1 t1 ^! l, B (b, a, d)
6 A7 S* F3 y# O0 K' M[5] Order 4 Length 1# R% r: T! d! L$ u& y% j# _7 |
Permutation group acting on a set of cardinality 4
6 {$ Z9 u3 X4 L! o* i Order = 4 = 2^2
' q! F _1 g; G8 v) [ (c, d)(b, a)
8 b! F- Q3 t+ w* T: F' f" S# J (c, a)(b, d)
2 T; @: p. v- R: v[6] Order 4 Length 3
* P9 e& A9 y: Y8 u& k; V5 x2 Y Permutation group acting on a set of cardinality 4! a& M% x0 a2 w, {, w; Q
Order = 4 = 2^2, C* t. P8 ?$ D' B ~/ N
(c, d, b, a)
6 p9 a' s* k5 X7 i) T0 h (c, b)(a, d)9 y: e) T6 U+ G
[7] Order 4 Length 3
, Y& m: F' q M/ r Permutation group acting on a set of cardinality 4
1 c. Z) `; A( j( \' C$ Q Order = 4 = 2^28 A& i' x5 u' W7 U
(a, d): R/ M- M+ P5 W$ E
(c, b)(a, d)
/ O, H% Q% O" lConjugacy classes of subgroups" a% u5 t7 d4 S
------------------------------
+ ]+ n4 H: H6 b6 O$ Z9 F6 H$ E9 D4 H9 m/ h1 ^
[1] Order 6 Length 4
* g' K& e/ ^( ?) g$ t9 n Permutation group acting on a set of cardinality 4
5 v q5 V" e/ R4 I; b5 [ Order = 6 = 2 * 3
" `) F' R' E/ [5 i( T. U4 _ (a, d)
0 q0 j. G ^6 c (b, a, d)9 ]- ^/ T0 a$ _6 A5 U! Y
[2] Order 8 Length 3: k( {1 g. J% {$ T. n
Permutation group acting on a set of cardinality 4
- i( w8 D3 D7 u! `+ V" y, ~2 \* i$ Z Order = 8 = 2^3
6 u' D8 N8 f' k( ?: S- I (a, d)$ C4 E% N% y: X+ x3 {
(c, d)(b, a)# A6 r5 s% _. B( u5 ]% ^ |
(c, a)(b, d)
" H. P" Q) o4 A$ p* A[3] Order 12 Length 1
1 p% g9 f7 t! `* A! ~2 m Permutation group acting on a set of cardinality 4
; Z. J2 x+ U6 L$ U8 x Order = 12 = 2^2 * 3
' D- _7 \5 L0 }* W: ^ (b, a, d)1 X/ g" l" i# ~& G4 V$ c# J
(c, d)(b, a)! r3 V7 g3 U1 x$ q' e3 w
(c, a)(b, d)" V. }6 z- n; K, u
! L% T, U# p) L/ ^9 fPartially ordered set of subgroup classes
3 B- K0 s. m9 }-----------------------------------------. B3 Y6 i" N- T0 G& A
9 K2 r* y* M! B7 H* ^[11] Order 24 Length 1 Maximal Subgroups: 8 9 10
* r6 J6 w: p6 Y! D9 y; A---* N8 h' ]) d1 o! q" J- b
[10] Order 12 Length 1 Maximal Subgroups: 4 5) v- }$ X( p; ^, x6 M6 J$ O
[ 9] Order 8 Length 3 Maximal Subgroups: 5 6 7. g) h S3 N1 P4 A3 I9 x- N
---7 o% v% W7 U" O2 M
[ 8] Order 6 Length 4 Maximal Subgroups: 3 4/ e: D+ Z6 U1 S: M/ A% E0 e4 k$ d
[ 7] Order 4 Length 3 Maximal Subgroups: 2+ I' I& _2 v0 B+ P: z
[ 6] Order 4 Length 3 Maximal Subgroups: 2 3
* B) j9 ^. ~" ^, U/ h. I* t[ 5] Order 4 Length 1 Maximal Subgroups: 2( H8 y1 S1 z* }$ E: { |
---
& i# \5 `, r/ p& ^4 b[ 4] Order 3 Length 4 Maximal Subgroups: 1
' r, X. z) Q7 j, g, a[ 3] Order 2 Length 6 Maximal Subgroups: 1
$ z' P: F% c- o' Q( n& ][ 2] Order 2 Length 3 Maximal Subgroups: 1
1 z7 y A. ^2 P. D1 b/ ?---
c* n1 v7 j3 G[ 1] Order 1 Length 1 Maximal Subgroups:
; a# W" N3 s4 K' f5 q4 @
; t/ a; m6 P# B0 VGSet{@ c, b, a, d @}' H( H& {' [9 D$ T0 o( X) F' ~& s
Conjugacy Classes of group S4
8 i- _5 g6 S8 l, T; B: h. C2 k3 p-----------------------------
9 n) f" Z6 a. {; o5 y[1] Order 1 Length 1
. ?& \6 f f; Y4 ` Rep Id(S4)% k, j/ b2 f1 D8 ?
6 K% K& C5 Q% G- o6 F- g[2] Order 2 Length 3 ( R' p; F$ R, \$ l2 A, D; u6 C1 b
Rep (c, b)(a, d)3 I3 ~9 L( C5 o
: `) g) P; q. ]9 t
[3] Order 2 Length 6 7 E# U2 T2 ], J5 C! N( N2 i
Rep (c, b)
2 i6 |) N3 |2 \4 F& l' B) ~* V+ X
" v3 w. o3 e4 X[4] Order 3 Length 8 - i: a( N. M* v9 n$ I
Rep (c, b, a)
; Z2 ^, R9 b8 K! U3 F& q% l4 h+ X- r/ J) ]; _/ {5 q6 ?
[5] Order 4 Length 6 " j! P% p/ j. F0 G1 j/ \
Rep (c, b, a, d)& U% k! w/ g) y+ `0 I
7 O: q, C8 G/ L
( _. \8 r; k, Y% R% R' F5 |
|