- 在线时间
- 11 小时
- 最后登录
- 2012-1-13
- 注册时间
- 2011-12-22
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 418 点
- 威望
- 1 点
- 阅读权限
- 30
- 积分
- 204
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 137
- 主题
- 43
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   52% TA的每日心情 | 开心 2012-1-13 11:05 |
---|
签到天数: 15 天 [LV.4]偶尔看看III
|
对着S4群表看下面就能懂了,我曾把26字母乘群表带身上2月多
+ y* r. c& k- C; `" V0 [. ^2 M; @6 y. i* g8 {8 Z/ y
S4 := Sym({ "a", "b", "c", "d" });6 i7 [: \. ^9 e: t1 Z% j
> S4;% S' Y1 p1 }8 \# Q1 {. a& f
Generators(S4);( V; l. B7 {0 z
IsAbelian(S4);不是交换群
# N" y {, ?, l3 A9 e2 ?2 jSubgroups(S4: Al := "All") ;列出所有子群2 k" N( r6 `% L% a- D5 c
Subgroups(S4: Al := "Maximal") ;列出所有极大子群
2 E, E3 Y# @8 W$ H
5 V f7 j# g \7 [* D1 B$ h/ |! {SubgroupClasses(S4);, Y2 e0 j# Y% ? f0 O E5 z, ~
7 U5 Y$ L+ } ]/ M! m: {
NormalSubgroups(S4);& t! u1 Z- K3 c2 W2 Z2 v- E
AbelianSubgroups(S4) ;: g# y- L, `9 G. T
MaximalSubgroups(S4) ;
. R+ n" r, w- J2 P+ ?8 y3 f- ~9 L0 ~) L/ s9 v
SubgroupLattice(S4);成格,你可画下这群包扩子群的图
# K+ J- r2 ^0 ~& ~* z
/ x* o5 Z' _2 t0 ^5 BGSet(S4);
5 D) W% R- v7 R2 A# VConjugacyClasses(S4);
% Y0 l9 r0 F$ o& LNumberOfClasses(S4) ; 5类- D4 L8 G8 r# S- Y- S4 M
/ f; u+ h. d/ C
Symmetric group S4 acting on a set of cardinality 4
- E& o3 I0 n, C5 q, k* {8 }9 S/ G% E* ^+ n( uOrder = 24 = 2^3 * 3
, V+ u; `" {, z7 ^{
. ` u2 q$ A% A( e. W& l; {. X (c, b, a, d),/ q& _, E) ~+ u5 B. d6 z3 _" b8 g
(c, b)
/ ^' a9 e$ N7 x8 t} 两生成元6 y' j4 P# p! n9 \
false" `' s% q! x9 r7 h5 m: L9 @
Conjugacy classes of subgroups 子群共扼类( ?! b9 S4 F( l! F5 W- F
------------------------------
6 q+ ^# U( f: w" Y' i6 l7 W
% Q9 ^4 Z& u& g/ C6 }3 a. R[ 1] Order 1 Length 1
" \. B+ l- [" ^. n9 m( ~6 d Permutation group acting on a set of cardinality 4
6 c* @( M4 y9 J) `+ y Order = 1
4 e5 S9 H6 U* G$ X# D. P[ 2] Order 2 Length 3
' e# w) o& f0 N; g$ T5 } Permutation group acting on a set of cardinality 4
# {+ {0 | H0 P5 N: Y+ k Order = 2! J: ?9 w$ A. G* m; W
(c, d)(b, a)+ k; k; ~6 R' ?' A9 ~) ]" J9 @" i
[ 3] Order 2 Length 61 Q6 \9 y! ~ M( O! {
Permutation group acting on a set of cardinality 4
( [: e5 |0 _8 | d6 L0 f- v$ i7 P Order = 2
' \# r3 n5 q1 i( A (a, d)
9 i7 z4 W F$ d4 I( |[ 4] Order 3 Length 4
; S9 z1 {0 [# h* |% I7 }9 c Permutation group acting on a set of cardinality 4# Q6 e1 u8 `) O0 X
Order = 3' Z$ d% K; e* y' l' \" d
(b, a, d)
5 q) O# c! _/ R" c& e# W/ s3 @8 ^[ 5] Order 4 Length 10 b- j6 t- e: @& ~. `
Permutation group acting on a set of cardinality 4
* |+ r( J: ~5 W) ]% ?. E Order = 4 = 2^28 x* c' x+ x6 g$ M, Z7 k
(c, d)(b, a)
" T# f+ C$ X# r (c, a)(b, d)* }6 s6 r7 ~" P/ _) x! O
[ 6] Order 4 Length 3
: e) I$ H% F- {& m n2 v/ A Permutation group acting on a set of cardinality 4: ^( t$ G# n! {8 p" v0 y
Order = 4 = 2^21 H7 N" r1 {1 [; h7 J: C" s9 _
(c, d, b, a)7 v5 [3 n2 X! {4 }5 L) \
(c, b)(a, d)7 R% C/ D0 ^. c; \ Q
[ 7] Order 4 Length 3
& i C1 W" B5 n4 w Permutation group acting on a set of cardinality 4
" ^/ W) X6 o. U7 W# ? Order = 4 = 2^2( {' n: E+ ]. x' P5 t1 `7 q" Z
(a, d)
( V% Z4 M: {# q: A7 R- I (c, b)(a, d)
$ W2 B" X ], I8 e6 D# o c4 p[ 8] Order 6 Length 4
% L# i1 m6 D$ d L9 S Permutation group acting on a set of cardinality 4
8 h" ~2 f) [% Y Order = 6 = 2 * 3
9 q, K! Q1 r/ p& \9 Z (a, d)
# T ~1 O# F. O, k* u' B6 Y (b, a, d)$ g; M K! @8 r( E V4 j' t
[ 9] Order 8 Length 3, w6 z$ {- }4 B* c& g% A
Permutation group acting on a set of cardinality 4
! S$ F R# ?: T7 g; g Order = 8 = 2^3* {' o. C. h. ]' u z0 `
(a, d)3 M7 Z# @: v# Q5 K
(c, d)(b, a)
' _/ G( q7 d N7 o) U (c, a)(b, d)
5 ?# H' v+ k/ H W& l9 Q1 A[10] Order 12 Length 19 r, Y5 `5 k9 \$ k% P
Permutation group acting on a set of cardinality 4
% b, U' v- k' J$ E Order = 12 = 2^2 * 3& _& _' H1 f( A A7 y( k
(b, a, d)
; C( L9 M8 s5 ~8 N! x$ @ (c, d)(b, a)
) k4 |) b* l& e6 o; b# S (c, a)(b, d)' Z9 A* o8 r$ w& E( b" ?0 e4 C
[11] Order 24 Length 1
% j: |. k3 h* j# R$ H& Q' L Permutation group acting on a set of cardinality 4
6 U- `4 z+ O/ ]" K" `/ z$ V! ^ Order = 24 = 2^3 * 3
% `3 I' k( o; [* E8 K" k (a, d)1 e- M: D/ ]: @7 F
(b, a, d)
# H) W0 r- N8 |7 k; I (c, d)(b, a)
/ M, N; c" i, F v+ I (c, a)(b, d)* |4 i" i! \* T- o# n3 r
Conjugacy classes of subgroups) L$ ]- _2 n' R
------------------------------/ `: Y5 u+ b% f
- d6 X2 b# p- z4 g, r" I4 Q[1] Order 6 Length 4
+ h, V( | f! N: ~8 U" T9 Q Permutation group acting on a set of cardinality 4
; ^4 b9 m6 x7 G8 C Order = 6 = 2 * 3! h: \) `; J- L; V
(a, d)
: K' D: B$ u' j (b, a, d)8 m- m+ v5 P. e
[2] Order 8 Length 3' h- q1 w1 P* Y; q( _2 E( X
Permutation group acting on a set of cardinality 4( M m# K8 n, e' C' N W
Order = 8 = 2^3$ |) d7 {8 i: R! W
(a, d)6 h. j. u# G6 B4 S8 S
(c, d)(b, a)4 b5 `1 Z8 J* ?9 N" [) V
(c, a)(b, d)
: |) X1 ?3 Z; F$ }[3] Order 12 Length 1
. g" e3 N4 ~6 V0 h- ]8 i Permutation group acting on a set of cardinality 4* ]" u: F8 R/ s9 u6 |' T
Order = 12 = 2^2 * 3
1 s& V n- ~ Y) E# _ (b, a, d)
% n/ t. I. @- K, H; p- J% h$ S (c, d)(b, a), p* n: ^ U& c; U
(c, a)(b, d)% j3 S* X+ _. @$ d
Conjugacy classes of subgroups1 z% ]. q' ~' _# ]
------------------------------
8 D7 ?7 m! B9 i7 t1 t, p: n1 a9 U4 Z8 k! E X4 _! z4 N
[ 1] Order 1 Length 1
0 F7 a2 A2 }( ~/ d Permutation group acting on a set of cardinality 4
% f" I+ Q2 b3 R2 j: }4 G Order = 1
r# D6 J: O+ }1 v) B: c[ 2] Order 2 Length 3
, u6 ~( G& p0 j- l Permutation group acting on a set of cardinality 4
' D$ c* ^# G) ]: O Order = 2
& U2 t" s2 ?5 F% ~0 w' Y- R- ? (c, d)(b, a)
8 K* ], A6 m+ z$ y- ~+ E3 m4 O2 x[ 3] Order 2 Length 6' y1 E6 h: `# z; w/ ?: N- @
Permutation group acting on a set of cardinality 4
% v, }1 p% G4 ~/ R$ g7 M Order = 2
. ]0 x) i, ^# F# ~, a, D, [ (a, d)
* H6 n1 k4 c# l$ f4 J( p$ \: c[ 4] Order 3 Length 4
8 D n# R9 G* J6 R! [$ D) { Permutation group acting on a set of cardinality 4: p# y9 H5 Y6 M# X% j
Order = 3% ^' |) l5 G- e4 D4 \0 s: E2 [
(b, a, d)
: Y8 q2 h. l+ ?5 b! r( K[ 5] Order 4 Length 1
0 w3 A& q, Y, q9 A Permutation group acting on a set of cardinality 4
$ y; y K9 Z3 o$ _3 o* r5 k$ n1 C& e Order = 4 = 2^2
* s3 b/ v' G; y6 b( U (c, d)(b, a)! x* w# s6 \! E" G# S
(c, a)(b, d)
8 q& ]) ^6 E) I7 j" C5 _[ 6] Order 4 Length 3
; k+ h5 z L2 @/ z% S9 I3 y$ o) W Permutation group acting on a set of cardinality 49 H( i v* \" O5 ]0 W6 |
Order = 4 = 2^2
( t, N/ h S. H0 I (c, d, b, a)
; m% n2 q- L$ C2 W$ z (c, b)(a, d)
/ v/ }( J: p2 T* d. \# O# K" V[ 7] Order 4 Length 3! c& u; P9 R+ F2 l& g
Permutation group acting on a set of cardinality 4& Q& m9 R+ m" {+ B
Order = 4 = 2^2
8 i. M n" v9 ?: [ (a, d)" m C3 y" z/ R. I2 h# K4 d- y
(c, b)(a, d)9 C, f; M' ]) r9 H9 x
[ 8] Order 6 Length 4
* N+ R: M3 [3 Y9 }! b Permutation group acting on a set of cardinality 4) J0 m/ x% l/ z' U1 F' C
Order = 6 = 2 * 3
/ A9 G0 ~6 j3 \) d (a, d)
$ f! o( y# D- ?: q2 ]. f5 p) F (b, a, d)
( k( |2 u: g9 ?[ 9] Order 8 Length 3
1 ~, e) |6 a* X/ d Permutation group acting on a set of cardinality 4$ f$ H P% B+ N. s
Order = 8 = 2^3+ Y4 M2 H8 d* x9 ]; z
(a, d)
$ l$ r# u/ r6 ?% f' } (c, d)(b, a)
2 H* O* m7 r/ |; K8 M, } (c, a)(b, d)1 O% I& R i0 X+ e9 p+ V
[10] Order 12 Length 13 L* X8 I& _+ k% x* A4 W7 b
Permutation group acting on a set of cardinality 4) d1 T9 h& E5 ^4 s. B5 r
Order = 12 = 2^2 * 3
4 e1 A0 s) F8 E1 l) B" X! S$ T: H (b, a, d), p$ B5 j. z4 d" F m
(c, d)(b, a)
6 [# w( l: ~9 [ (c, a)(b, d)5 l3 D( \/ V" t/ _3 _' a$ s' _
[11] Order 24 Length 1
2 e0 S, j ^& b- k Permutation group acting on a set of cardinality 4* b. \" J$ ^) T/ ]1 K9 `5 A
Order = 24 = 2^3 * 3) a. P. l2 |, O+ O
(a, d)$ B& s K/ \. \7 \6 F |
(b, a, d)7 X) n- Q4 b. z9 h
(c, d)(b, a)
5 J2 n' W% n4 B6 J$ l2 S( P (c, a)(b, d)
# R% R1 ?4 T/ k% ?Conjugacy classes of subgroups2 l" ^) n7 Q5 W/ j1 l- _
------------------------------
% g3 B' L. `% k3 S8 U T4 N) f; Q. T
[1] Order 1 Length 10 ?2 W2 a) f$ D* W* F& H6 G
Permutation group acting on a set of cardinality 4* t$ A; {6 T) {$ _# ^
Order = 1* X' j; ^2 I* [; z1 @+ Z
[2] Order 4 Length 1
4 h+ b& [+ Y) i0 B Permutation group acting on a set of cardinality 4& w# [+ }; I, Y) p+ L" Y) H3 e t
Order = 4 = 2^2
( J' H- `0 y' O& ], B; V. I$ k (c, d)(b, a)
& c2 C; {5 r; Y k (c, a)(b, d)
# V6 _7 l0 E0 g[3] Order 12 Length 1& ~" ?1 i3 Y* c6 O
Permutation group acting on a set of cardinality 4
2 ^( [ _4 n. E1 b Order = 12 = 2^2 * 3" [8 V/ K9 k1 s3 o$ }
(b, a, d)
* t6 K. y& H) k: I: {3 E( I* v4 D0 A4 V (c, d)(b, a)
( G5 P" P$ g9 z (c, a)(b, d)6 L# r6 D1 K& w. m, u) t
[4] Order 24 Length 1
8 u" `2 A, L! }1 K7 C7 ] Permutation group acting on a set of cardinality 4; I. u' R( V; q+ w2 z2 V
Order = 24 = 2^3 * 3' t ?- \) J2 h" Q5 u4 t1 D0 R
(a, d)3 G( i7 _1 d/ ^" @: A) }0 c o
(b, a, d)
0 h1 b" X. f% a) `" o9 d (c, d)(b, a)$ n0 O' u I8 s3 T
(c, a)(b, d)
8 \# ^7 t N1 E9 ~0 g( R+ p2 p- _Conjugacy classes of subgroups8 L& E- p1 k. P9 v1 O
------------------------------
7 P; Y" X) F0 I2 o, f
( L6 f' D/ c5 r4 d2 s[1] Order 1 Length 1
2 V' n* I2 l4 d; H( R Permutation group acting on a set of cardinality 4, E" |$ l3 \5 j' A
Order = 1
, w# G7 [" }" B[2] Order 2 Length 3; Z5 ?1 z# O2 Z+ _! {' e
Permutation group acting on a set of cardinality 4
; _5 R* s1 j% V* r Order = 2
: L! t. l5 B- R8 v' E0 } (c, d)(b, a)8 d3 i, ^* C8 T$ ^2 M2 Z- z
[3] Order 2 Length 6
3 ?4 G+ U8 F" R/ M E Permutation group acting on a set of cardinality 4
1 k! U* T9 R) E- D7 u8 W: f Order = 2
2 `" z3 ^9 W1 S7 U" h7 X( { (a, d)! T' x. i! M* Z1 {6 d1 F: P2 Z
[4] Order 3 Length 4( C5 ] \! \" y( O
Permutation group acting on a set of cardinality 4
4 h2 h& R5 }* l2 B Order = 3
8 s& R: d0 \4 z! l2 a! ` (b, a, d)+ J$ W* x' Z3 `
[5] Order 4 Length 1
' K# e/ V; _( m/ }; ^" F Permutation group acting on a set of cardinality 49 B/ z2 c( j5 r o
Order = 4 = 2^2
; q9 z S; T* z$ e; w" \+ s1 g (c, d)(b, a)
5 ]# Q4 c- j/ c O+ Y. S2 f# n (c, a)(b, d). o, a- M# d! s( M4 Q( _& i3 |& Y
[6] Order 4 Length 3
7 y; k% n g) y Permutation group acting on a set of cardinality 4
' }: U4 V1 C+ V Order = 4 = 2^2! B' r7 z. O v1 q9 O5 R, H
(c, d, b, a)
' G' G: V4 C, Q* K (c, b)(a, d)
% F) O5 \4 E' m/ ?6 {2 F4 B1 `[7] Order 4 Length 3
+ D! K# P2 U5 X% f Permutation group acting on a set of cardinality 4
p* ^% M" Z2 i3 X2 p, a Order = 4 = 2^25 k- |. R3 i, a) K2 ~
(a, d)9 Q/ X4 W" I2 p3 l( V$ s
(c, b)(a, d)
0 P/ l, j- k- g% L$ L# WConjugacy classes of subgroups
5 o2 y7 j% \6 J) x9 i! D- ^------------------------------
' w8 a5 R. E! q2 m/ o. Q4 F: `) p' Z# r Y
[1] Order 6 Length 4; S4 G6 X* p1 O1 Q6 n, s6 c3 Q
Permutation group acting on a set of cardinality 49 H6 V6 A' p. D$ a- t: |9 ?% E( D
Order = 6 = 2 * 3- v2 C. i+ M3 N9 B; p
(a, d)
|1 b) l) k. v0 R# G/ F' \ (b, a, d)
8 v! O( P+ j. U- a[2] Order 8 Length 3
3 A! B. z0 ^+ L8 u3 f7 R2 Y Permutation group acting on a set of cardinality 4 H. `4 M& P& Q: q0 N
Order = 8 = 2^3
8 g! X1 s& v" f (a, d)0 m; L, h. e' S5 G2 f
(c, d)(b, a), d: a* [9 v0 [* U* |0 c* a
(c, a)(b, d)
1 z2 F7 X/ z7 q0 D1 Q" W% H[3] Order 12 Length 1
4 Q- {5 r, J& o! G% r" O" t" q% q% g Permutation group acting on a set of cardinality 4/ V' I" J# Q8 t0 d
Order = 12 = 2^2 * 3* k5 X4 C1 \3 ?& X, u- ?
(b, a, d)
; L4 c4 F/ f0 R/ q! k (c, d)(b, a)
2 ^# f- H, x# K4 w! R7 | (c, a)(b, d)9 j2 i0 V3 S* ^! A1 N( ^0 i
1 \' ]0 G/ H' ~: s, k4 G0 FPartially ordered set of subgroup classes
0 G2 [ ^4 w2 ?5 e! @' O* L-----------------------------------------
2 m( U: D' P4 ?: i% M' D' a j1 ^1 N! a% k- D
[11] Order 24 Length 1 Maximal Subgroups: 8 9 10. ?7 I. Z- q3 `. A/ i
---
6 w, k! T! a7 q% j( m9 C0 t[10] Order 12 Length 1 Maximal Subgroups: 4 5
) F2 l3 w, R) `* O- D[ 9] Order 8 Length 3 Maximal Subgroups: 5 6 7' _3 G/ D3 P) G2 I& i6 ^
---/ q! `- K9 ]9 [6 w9 J/ s: q
[ 8] Order 6 Length 4 Maximal Subgroups: 3 4
# H7 i9 l) A2 Z3 ~9 M# e! V! h[ 7] Order 4 Length 3 Maximal Subgroups: 2/ k& |. A& s/ }1 [% l$ c& `, @
[ 6] Order 4 Length 3 Maximal Subgroups: 2 39 X2 ?3 N; a0 _' D2 Y5 o; [) d6 z |! ?
[ 5] Order 4 Length 1 Maximal Subgroups: 2
' w. u+ [- j( Y4 B2 R( ?9 M& o---6 h) a8 m/ E5 x+ I3 s; u
[ 4] Order 3 Length 4 Maximal Subgroups: 1$ V$ A2 Z! H' s/ M! i( w
[ 3] Order 2 Length 6 Maximal Subgroups: 1
0 |/ x( h0 J1 V- h4 R$ L[ 2] Order 2 Length 3 Maximal Subgroups: 1# I4 t- S; r3 F9 }+ o
---
: _$ [: X) {; y* Y" ]; f0 V+ p[ 1] Order 1 Length 1 Maximal Subgroups:
+ ~ d$ x. o: R/ B) B( m" t# K1 k, `0 a# J
GSet{@ c, b, a, d @}
( c% T9 Y- B# _Conjugacy Classes of group S4* t Q/ n" J+ q1 u/ _
-----------------------------
2 W' G$ I l+ s( T: `[1] Order 1 Length 1
8 Q$ z O% u, N1 R- g% C Rep Id(S4)
% |& x6 y4 |' V9 R; N% c- P" f" Y- ~! H5 ?! g
[2] Order 2 Length 3
) Y4 W8 o$ t3 R4 R: B9 x$ V& A Rep (c, b)(a, d)
* J6 w/ _" N `7 z. |6 l9 x+ u) m; Z1 ~: B4 u1 Z
[3] Order 2 Length 6
- k" T& Z( ^+ h8 u+ @6 A9 a Rep (c, b), U- j3 l* K2 V/ |+ o
; N! J- v* r9 o6 v6 @
[4] Order 3 Length 8
! c$ E. t+ `; U! Z& | Rep (c, b, a)* G/ F+ U! J/ d' w% V2 ~
, c4 w4 _2 i6 K% j2 z
[5] Order 4 Length 6
: K( m# c. @ Q. U' n' A" Z% h& T Rep (c, b, a, d)- J- e, q/ v9 y0 T' N( w
" s% s3 R8 N% u0 _( u
' X; D0 t. z! J
5 |
|