- 在线时间
- 11 小时
- 最后登录
- 2012-1-13
- 注册时间
- 2011-12-22
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 418 点
- 威望
- 1 点
- 阅读权限
- 30
- 积分
- 204
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 137
- 主题
- 43
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   52% TA的每日心情 | 开心 2012-1-13 11:05 |
---|
签到天数: 15 天 [LV.4]偶尔看看III
|
对着S4群表看下面就能懂了,我曾把26字母乘群表带身上2月多
& Q& d6 H3 `/ X% B- s0 m, L0 _* {3 F! {0 ~
S4 := Sym({ "a", "b", "c", "d" });
# d0 `4 {1 X7 y V% [> S4;
' E; A) d* a5 z+ M# uGenerators(S4);" P; L- H, \4 b& e9 q! ~/ v9 b4 {. U
IsAbelian(S4);不是交换群. X, K {5 t" t4 Y1 F& t
Subgroups(S4: Al := "All") ;列出所有子群
. m$ Y. i) {$ O Subgroups(S4: Al := "Maximal") ;列出所有极大子群& v/ X( d7 O' F' Z5 K
! T) U1 v& U' r/ P( O1 R( k$ I) LSubgroupClasses(S4);
# u7 d& E/ x" f* d! ]4 i2 @
. k9 c* x/ i* {7 [) Y' NNormalSubgroups(S4);
: v& b- | X, lAbelianSubgroups(S4) ;/ H" A, D4 i' @4 l# v- q9 C
MaximalSubgroups(S4) ;
/ M2 r" j9 I2 _4 j/ v3 D
8 N0 {; ?* @4 F' q1 oSubgroupLattice(S4);成格,你可画下这群包扩子群的图$ m( v3 a! b1 K; V, O6 I$ U& n
+ w% T! n, U V
GSet(S4);
9 m8 m- @) m- l5 @; m1 S JConjugacyClasses(S4);
# J, y2 N2 ~, a; V3 KNumberOfClasses(S4) ; 5类
* f% A# E; c5 N3 p7 L5 Z% |. `, i7 R% ?& }" S& p! q) ^, V
Symmetric group S4 acting on a set of cardinality 4) Q9 ~& ?8 v. O3 C; @
Order = 24 = 2^3 * 3! U3 @% p) J8 Z U
{
& \+ ` Q! A8 l (c, b, a, d),
7 l4 t2 n) o% B. k (c, b)
+ X) U. z0 @# ` k, t7 X} 两生成元0 G' @+ O# u4 f/ j4 H
false
3 g, I. ~& V- t. |+ c4 YConjugacy classes of subgroups 子群共扼类1 K; V9 Z) H7 N' g* s$ X2 H
------------------------------ `# X) a5 }; @" s5 N
3 w- z) S) Z c0 l3 |1 }, E
[ 1] Order 1 Length 1
2 p& ]3 r" A4 ?- l, d Permutation group acting on a set of cardinality 4
' V+ L5 n W n. }. |! `3 R0 k Order = 1 b( |7 B) k+ B$ N c- W7 n
[ 2] Order 2 Length 34 `- v! z. E% j: q( t5 a
Permutation group acting on a set of cardinality 4& u" l5 ?* K7 q \4 H" W
Order = 2- y4 {% c1 C6 G; t5 x
(c, d)(b, a)2 k; _/ C: p2 @" _) F: P/ l# ?
[ 3] Order 2 Length 6
5 ~" B& X8 p* N8 D Permutation group acting on a set of cardinality 4
, s p# ?* F7 Z1 [ Order = 2
( Y6 T2 _- C3 S8 g0 P" f (a, d)
% q S0 t" m8 c4 f' {( U/ N# U[ 4] Order 3 Length 4$ S6 m4 J4 Q7 ?5 Y+ X A4 J
Permutation group acting on a set of cardinality 4
% w+ i1 o" [" Q Order = 33 h( \* _* P+ p! n! P
(b, a, d)
1 k: o: j0 |0 \[ 5] Order 4 Length 1, {9 D) L9 f1 _0 t. ~; `9 `% r
Permutation group acting on a set of cardinality 4
5 P- I4 @8 [( A' h! r Order = 4 = 2^2
0 g0 p2 L" D% v D+ @; I) V( o4 ]/ u8 \ (c, d)(b, a). u" a! _8 O; f
(c, a)(b, d) h5 @" w( d. n* G; E H" g
[ 6] Order 4 Length 3
# h0 ~- }9 c0 Z2 Y Permutation group acting on a set of cardinality 4: m) ?; e L" o" l
Order = 4 = 2^2' v4 Z0 L% [! Q5 w2 M
(c, d, b, a); C: x+ t2 u! T2 D
(c, b)(a, d)
" Z/ d3 ?4 O+ \, W3 \7 O[ 7] Order 4 Length 3
9 H! I; X; K( H3 X( `4 o3 h Permutation group acting on a set of cardinality 4
( e' X* y* P' w7 C6 N% T Order = 4 = 2^2
' O2 i: v. ]* V6 P (a, d)+ V. V8 r( {5 B# N
(c, b)(a, d)
8 `. o- Q! a2 T% Z q2 B[ 8] Order 6 Length 4/ \; b( g, p r/ ^0 k- D
Permutation group acting on a set of cardinality 4 F @$ A- {6 {9 H: t+ \
Order = 6 = 2 * 3( F6 @0 J. L* E
(a, d)8 I. p4 K4 A- T* d* h$ B
(b, a, d)1 [; \' m# n& |6 L0 v+ ]. l5 h$ H
[ 9] Order 8 Length 3: F8 d! O9 W3 B' r' {
Permutation group acting on a set of cardinality 4
2 d" X- b: T: a9 _' G Order = 8 = 2^36 x# e. i2 e/ `; c* q8 E
(a, d)6 T9 i2 k' M& O7 E9 I& L0 b' g
(c, d)(b, a)4 I5 r# M, ] y0 F' F
(c, a)(b, d)
9 J; ^+ [7 s+ s% r7 T0 p[10] Order 12 Length 1
. |- P7 @0 ~$ p8 C* i1 D3 o Permutation group acting on a set of cardinality 4
! B$ J* B U# k7 a5 ~ Order = 12 = 2^2 * 3 d+ a z5 U% H$ K$ n
(b, a, d); D5 |9 m F( t0 e5 L# ~1 h
(c, d)(b, a)+ K$ v+ l! e2 W7 V
(c, a)(b, d): b& J: U% g' Q/ |
[11] Order 24 Length 1
+ r/ G" j, Y2 U* P: t Permutation group acting on a set of cardinality 4
/ E, m3 b; O; H Order = 24 = 2^3 * 3
3 i+ t; N6 c3 c, L' }- ^# T (a, d)* I- q8 ?8 \3 K- R7 H
(b, a, d)! }% d2 D# y1 B/ b3 |3 Z
(c, d)(b, a)
& \. G1 [: p# F( p (c, a)(b, d)
* a: G- l% q- r$ H0 S' X+ ~Conjugacy classes of subgroups
, t8 W& |' z3 g4 O( X) \4 d0 P% v# k% S------------------------------
" ?# m _* Q6 u" q! o) a9 Y% E1 e$ l$ A
[1] Order 6 Length 4
' @: y6 S( C& d* ? J Permutation group acting on a set of cardinality 4
' ]: P" W% s0 r8 Y; F: X, Q Order = 6 = 2 * 3
9 q+ c1 ~' U0 R% ] (a, d)
4 ^1 s( {. w. \$ b: e (b, a, d)6 V$ i+ h( B' ?
[2] Order 8 Length 3
9 N4 U/ s' P* h7 U Permutation group acting on a set of cardinality 4
& G: l# ]& V8 j( V# f" x Order = 8 = 2^3, E: ]' ^5 W, y4 m: V/ I* b1 y% E
(a, d)9 {; \# V) Y. f7 O5 j
(c, d)(b, a)8 X/ U8 U7 t* B( T- K9 @, g5 X
(c, a)(b, d)
" m0 ]; W3 W: q& U[3] Order 12 Length 1
# ]. \# G; d4 k6 b: h4 M7 L Permutation group acting on a set of cardinality 4
$ P) }- t& \8 Z2 y# o Order = 12 = 2^2 * 3
3 b* w `6 f1 t6 \8 | (b, a, d) }' n8 w- C' ^# V
(c, d)(b, a)
5 j) `8 x* ~; `; h0 t (c, a)(b, d)
) }5 B& |+ d. b3 _* I2 e! V3 aConjugacy classes of subgroups
7 u& b7 h" V" {. j# v1 _------------------------------ c; U t6 l4 y$ C6 p* k1 A: @
: a& l# h6 S8 D5 V% ~* M8 q0 N' G c
[ 1] Order 1 Length 1
z5 R7 o0 N9 l$ E Permutation group acting on a set of cardinality 43 ~( j& S5 l1 H m$ E0 a
Order = 1
) V A( @: v w% N) C' L$ L( t) P& p[ 2] Order 2 Length 3 n+ q- U, s) o2 b9 A9 y6 w6 ?
Permutation group acting on a set of cardinality 45 C0 h% {- N4 q
Order = 2
) ~* s9 L: C( A, S7 C, o6 I (c, d)(b, a)
+ M7 w8 m' W7 g3 z- l3 L- I- r4 h5 `[ 3] Order 2 Length 6" m9 k/ F) Q7 C. d" E' [+ l/ U
Permutation group acting on a set of cardinality 4
1 [ H x: n1 F8 l# s Order = 2
& B0 z: L6 @7 ~! G7 G (a, d)5 b1 t2 ?# d5 R% H
[ 4] Order 3 Length 4
- S' g) O1 J8 ^$ L3 F Permutation group acting on a set of cardinality 4
+ g1 g3 h5 v8 Q! e3 e Order = 3) f; I' Z( i" b5 w* C/ s0 i
(b, a, d)
4 z# [9 C/ ]$ q5 P[ 5] Order 4 Length 1+ _/ y5 h+ M; `7 N( K
Permutation group acting on a set of cardinality 4
g4 ]4 M% I! |3 v- g4 b Order = 4 = 2^2
0 }2 c) S+ N2 F3 L. Z8 D$ } (c, d)(b, a)
% F; Q: B p1 ?- D# r' o (c, a)(b, d)
' u$ Z! R! d+ L* }[ 6] Order 4 Length 3
8 u& y9 J( t' g% S1 o Permutation group acting on a set of cardinality 4
C4 w: |8 R% T% p: R8 d Order = 4 = 2^23 ?- T+ q* X# V
(c, d, b, a)
5 c1 f5 v- o: K6 _1 D1 i (c, b)(a, d)- r! \- ?+ I' F7 F1 E9 d4 ^) I. {
[ 7] Order 4 Length 3' r6 ~' w. P8 S& X
Permutation group acting on a set of cardinality 4) z4 A9 {) x( H. A7 \
Order = 4 = 2^21 V1 p1 N- Q- I+ {" Y" H4 P* ^: x3 f! q
(a, d): x+ h/ u4 k7 p" Q& ^9 Y' f: F
(c, b)(a, d)
\; b/ y* |6 d( \# p[ 8] Order 6 Length 4$ N- V9 o/ ^' D: U
Permutation group acting on a set of cardinality 44 U$ c, x# r" } Q0 p' R
Order = 6 = 2 * 3# U! V$ Q2 X( n' K& c+ K+ r# u X
(a, d)
) j* t" i4 z* s; X (b, a, d)
% f2 J7 M- \6 k+ V* f7 e% _& [[ 9] Order 8 Length 3
( n* X% X2 o& f4 H% S/ _* q Permutation group acting on a set of cardinality 4
4 n* \% j- X: L9 [ Order = 8 = 2^3
% R! P. S G# L) I: M, o& @+ ^ (a, d)" {2 A; `3 _% `3 W p6 |
(c, d)(b, a)8 M+ h$ \, [! W" V* R( k o' Q
(c, a)(b, d)
! M7 ]4 e4 U( Y/ _# Z! F) O2 E( S9 L[10] Order 12 Length 1
3 a. g3 o( y" n% n# I8 i/ P Permutation group acting on a set of cardinality 4
: `. d1 y/ d' J# s% l, \) v Order = 12 = 2^2 * 38 f% f7 [# u- H0 M0 I/ [
(b, a, d)8 H* O, g! x" E6 X+ m. @# J v% L, a
(c, d)(b, a)4 s+ @0 |7 {1 X& p
(c, a)(b, d)7 w* ]- i5 R: Q+ {
[11] Order 24 Length 1: I5 d. q2 `' W7 t
Permutation group acting on a set of cardinality 4
( S- z9 i Y$ k% V Order = 24 = 2^3 * 3) o, K. h7 q3 s0 X/ L
(a, d)
! b5 h2 @6 i2 a5 }( R$ D4 B (b, a, d)' ?5 d2 F: r7 Y2 Q2 u: j' S$ \
(c, d)(b, a)
2 {* |4 Y5 Z# Q3 q6 i (c, a)(b, d)
6 [- E+ K/ J- Q* gConjugacy classes of subgroups8 ?# a! T- N$ n. T6 n2 J' W. S
------------------------------
3 ?$ d! E5 Z% Q( z' f7 E f7 {$ Z8 U
[1] Order 1 Length 1# S/ M1 V. ~9 N" x
Permutation group acting on a set of cardinality 4
: j' @5 o" e7 X6 I Order = 1
s( v$ z% ~: I7 I; @9 K1 a[2] Order 4 Length 1, z7 p$ G+ B/ A, H& S8 G- `$ D8 T, p
Permutation group acting on a set of cardinality 4
" |7 E8 |' B( J/ f% |+ E( s6 ~5 a Order = 4 = 2^2
2 B: e- ~7 ]! x (c, d)(b, a)
; @0 z( G) y% s# L (c, a)(b, d)
* f# N1 W/ Y8 N8 X5 l( l* r9 S4 N[3] Order 12 Length 12 ^' A' S' g3 F- o
Permutation group acting on a set of cardinality 4
" ~& @+ w) F; _ Order = 12 = 2^2 * 3
6 q% j2 ^" Q9 b5 i5 ~) \) m (b, a, d)+ }# J: I4 j E& a0 |: M
(c, d)(b, a)+ k) D |# Z4 ` c
(c, a)(b, d)
/ w* p r' m% i$ N6 |: L; h' W[4] Order 24 Length 1+ k5 J! F( F' R
Permutation group acting on a set of cardinality 4
0 ~0 P- W$ b) d* X Order = 24 = 2^3 * 32 W b8 P( O' U" \
(a, d)
4 w. f5 f5 `+ q, O$ [7 `, D; z3 H (b, a, d)! `1 w; V3 y5 o/ }( Z# E( J
(c, d)(b, a)
1 {& v- r" W G2 o" m8 s (c, a)(b, d)
( E# s, {3 N5 t% zConjugacy classes of subgroups
6 c( T' |6 h! R' G------------------------------
' y* X) [. }" r8 ^1 S6 ?$ f, A a' I
[1] Order 1 Length 1
5 |5 B- M, P1 H4 t2 Q Permutation group acting on a set of cardinality 4
- N: O. {/ `4 x2 n' Y0 v4 P1 D0 q2 T8 m Order = 1
" x1 D% [1 D9 U0 M8 }- `[2] Order 2 Length 3
. l" ~' X% D) D( s" w8 f Permutation group acting on a set of cardinality 4# \: X# w- k3 x
Order = 2
5 N/ B7 A/ \2 V- ~" D (c, d)(b, a)$ p$ R$ v* T6 K! L
[3] Order 2 Length 6: ]' L# v8 h, p) K1 u
Permutation group acting on a set of cardinality 4
% N7 F: V: ?# J4 S9 d Order = 2
0 W/ O' h# i4 Y1 [ (a, d)% q0 X/ l ~$ l; d/ d% v
[4] Order 3 Length 4
5 J! P: ?& |* D9 k# _ Permutation group acting on a set of cardinality 49 \! [$ U) i: T) R/ y
Order = 3# ^( B% @% S! J% m: v- a( K! m
(b, a, d)
, ]2 J7 X: R6 y( U: y[5] Order 4 Length 1
) z' p8 x% Y7 j, j! y; F: ^ Permutation group acting on a set of cardinality 4* j4 S% ^3 Q& m$ y/ z( i3 m
Order = 4 = 2^2
s& ^: ~! X# T9 b! n (c, d)(b, a)
4 W" ~9 ]2 J9 B. R2 u- x4 s: J (c, a)(b, d)' V' \: a$ l6 i9 i
[6] Order 4 Length 3% O$ `# S H' |) R4 R5 k* n
Permutation group acting on a set of cardinality 4
; [6 E- Q3 |( V: ?6 v+ b Order = 4 = 2^2
4 v3 r A& C$ Q (c, d, b, a)
: ~0 F) K8 e0 b% p$ g- D2 U7 V; g (c, b)(a, d)" |- h- M+ ^! |
[7] Order 4 Length 3, N1 |% `! z0 B) n, t
Permutation group acting on a set of cardinality 4
& K! n$ R( T6 F: c8 K Order = 4 = 2^2
+ |% r7 q0 m" n7 P2 Z" B (a, d)
/ d W: z! T/ q" N4 W7 c5 Y9 b- \- U, c- Y (c, b)(a, d): k5 ^- r0 L1 {- I6 C, U
Conjugacy classes of subgroups) @9 y2 a5 y& u2 u7 @! E3 b
------------------------------% k" p+ [1 F: ~0 w' U) y* E9 @
. q+ Y- B# j7 i& x- B
[1] Order 6 Length 4+ Y2 L$ p* H* x& I- k1 `+ t
Permutation group acting on a set of cardinality 4+ H. j' o K: ~* O* `0 I% d
Order = 6 = 2 * 3
, g; \9 \8 f* X6 a1 _9 Y; l- A (a, d), d% [% J7 T3 |2 J
(b, a, d)
: V+ ]( V3 J7 \' i[2] Order 8 Length 3' C d% v) ~- u/ C
Permutation group acting on a set of cardinality 42 v: K) w: q8 Y& n
Order = 8 = 2^3! Q8 K C+ d1 ?4 Q, h
(a, d)
+ Z0 `3 `3 `. t& L3 x (c, d)(b, a)
# e' L1 e! x' F# p! m+ J: {7 O$ L9 O (c, a)(b, d)
v7 h2 M/ m/ U: }[3] Order 12 Length 1
* o; V# _& Z/ a) i Permutation group acting on a set of cardinality 4
- o8 e `+ ^) X E B Order = 12 = 2^2 * 3
* m0 m- k8 o2 V (b, a, d)
0 ]* z) @% [! M& i9 ^ l$ x (c, d)(b, a)
" d. b" ^9 b) e9 C (c, a)(b, d) e# O. g" h4 L( Z
4 V. y0 S' B# F+ Z# @9 |! [Partially ordered set of subgroup classes( E4 g+ h* T. _, m
-----------------------------------------1 R' U# }7 E( o2 q; D
. `, z& x4 U, n# j6 h/ `4 ~3 Z. \
[11] Order 24 Length 1 Maximal Subgroups: 8 9 10; U6 ~$ T/ G8 J, a! T5 M
---
+ f5 ?) _6 N. y7 f0 P! ~+ l( ^[10] Order 12 Length 1 Maximal Subgroups: 4 5
$ V4 @5 L/ G7 a9 L& Y, V# M[ 9] Order 8 Length 3 Maximal Subgroups: 5 6 7
$ ^9 r- i6 z- z* ?7 }! Y3 }1 z---
1 p$ Q2 W: G" A' ^5 E; ?) C[ 8] Order 6 Length 4 Maximal Subgroups: 3 40 \/ s4 z, O, {4 I- u* E7 X+ F+ v5 ~
[ 7] Order 4 Length 3 Maximal Subgroups: 27 x$ U1 H) G- G' _) m% G1 [$ J
[ 6] Order 4 Length 3 Maximal Subgroups: 2 3- U I! y2 x1 {! E( A! ?! o) o. H3 k
[ 5] Order 4 Length 1 Maximal Subgroups: 2
+ V1 O0 g+ d$ z* n# q$ x: W---
9 v+ [5 B% o5 Y! Z[ 4] Order 3 Length 4 Maximal Subgroups: 1& b4 I1 N/ x& b7 A% u2 l) b6 L
[ 3] Order 2 Length 6 Maximal Subgroups: 1
! M" Y* G& X3 m# J& a% [[ 2] Order 2 Length 3 Maximal Subgroups: 1" a- B& x8 n6 t/ E! E( B2 _
---
( h- y1 ?: p3 ^! ^6 L7 N9 y2 |' y: k3 q[ 1] Order 1 Length 1 Maximal Subgroups:
& o+ a* t# a; u {" n/ ^8 @/ Q) I5 `: h3 R
GSet{@ c, b, a, d @}
# N, v& U: r0 H& E4 I$ l% q& CConjugacy Classes of group S4
1 C1 X( F2 _6 }. w" F: Y-----------------------------
) n/ Q, I, a+ T# y; p) X[1] Order 1 Length 1 M/ p' Q- C. ^3 K; @: G- \1 I( B ?
Rep Id(S4)
8 e, o2 G: p* u! z" h
+ N3 S7 j3 l4 J- l6 e* A- A+ X[2] Order 2 Length 3
& C/ r- P/ s" O. J/ R; l Rep (c, b)(a, d)
2 F+ w4 A1 l- x' t. |0 N! a$ p8 e# n1 H' \9 I: B$ \0 C1 Y: U
[3] Order 2 Length 6 2 J d0 K* d: Q7 ^) P; ^
Rep (c, b)
0 A0 t& P8 ?& u8 D8 H! R+ `/ V! u; K( Q( S4 r1 K2 |
[4] Order 3 Length 8 7 X7 w/ i1 ]: \6 f {
Rep (c, b, a)( [" c) J# |" j7 a4 Q
: E9 l3 F% s+ I4 l5 @
[5] Order 4 Length 6 + Q5 H8 ?9 a8 f) j
Rep (c, b, a, d)
1 u& U3 Z, C) C- G% |% X+ q* @1 ~) e6 O3 c7 E7 G$ ]5 C: ]
( X0 ? J6 E2 u$ f& c% H
5 |
|