Pronunciation of mathematical expressions0 o) P- _2 V: W2 H1 U/ r
The pronunciations of the most common mathematical expressions are given in the list# d% P' C* W: f2 K2 `2 d2 h5 a' y
below. In general, the shortest versions are preferred (unless greater precision is necessary). 0 @* m' b N. u1. Logic ( y) j3 B% z6 p! P. R6 H9 there exists ( b$ h6 c' _0 v8 for all + p9 q. {9 l" L% J# E% f& G, Zp ) q p implies q / if p, then q 4 i/ M. v0 g3 b5 Qp , q p if and only if q /p is equivalent to q / p and q are equivalent1 Q8 d, w7 f2 W6 A7 N. A
2. Sets/ A0 m5 E8 R) o8 S3 T
x 2 A x belongs to A / x is an element (or a member) of A! V8 ^* x. A3 y& C
x =2 A x does not belong to A / x is not an element (or a member) of A ' j' g$ I3 f7 _A ½ B A is contained in B / A is a subset of B4 T) X2 L) ]' H6 j
A ¾ B A contains B / B is a subset of A" A" j) ~: X) U% q( Y7 S5 u$ }, d& m
A \ B A cap B / A meet B / A intersection B9 K. P( J* e4 b% J8 X
A [ B A cup B / A join B / A union B- |# r0 ]% S* a, U# P
A n B A minus B / the di®erence between A and B0 Q# s: i5 Q* U, s9 ?9 q! e J
A £ B A cross B / the cartesian product of A and B , |5 `# m+ p+ B% u6 J# n6 i8 s3. Real numbers+ |5 E6 t- m V) q. G9 R
x + 1 x plus one5 G0 Z1 P% c6 i, j9 R
x ¡ 1 x minus one( J. s( i+ X4 i4 f
x § 1 x plus or minus one 8 ~1 G3 ^' Z( b5 K/ V' J( Txy xy / x multiplied by y 9 I, P2 p c$ z' E7 V t! O5 f(x ¡ y)(x + y) x minus y, x plus y $ k9 S( e# U( a4 Gx3 h5 S; Z0 O3 l" K6 P& d
y4 m: W+ A1 a7 J: q5 P. L B' x
x over y 8 g8 ? Q* b6 M5 B+ B= the equals sign - _2 K9 v$ u; Y( F4 y) V/ Gx = 5 x equals 5 / x is equal to 5- l# W' J5 n. F2 k0 J: b6 t
x 6= 5 x (is) not equal to 5 / X& ]4 j, w) o* n1 ! `# K9 U1 c( E) a F* k7 Z3 Bx ´ y x is equivalent to (or identical with) y + P/ q+ u5 q) }8 n- cx 6´ y x is not equivalent to (or identical with) y 3 A- g' M7 Q0 K1 ox > y x is greater than y4 o, X9 w1 Q6 F6 Z+ E
x ¸ y x is greater than or equal to y# z5 _- ~( s2 |8 G! F( I' t1 W
x < y x is less than y 8 C8 E, v: H6 s, H( Px · y x is less than or equal to y$ T+ [1 B- v% R0 r3 q& ?1 L a
0 < x < 1 zero is less than x is less than 1 5 \/ b5 _0 t L8 [$ O# ?. y0 · x · 1 zero is less than or equal to x is less than or equal to 1 $ r/ Q9 |/ c% sjxj mod x / modulus x $ `& z# G3 y& a2 g" U U) Lx2 x squared / x (raised) to the power 2 : J- @) A1 F4 ^0 b" U) H& zx3 x cubed 3 p/ O1 k" k8 o$ W! Y q; J' {x4 x to the fourth / x to the power four + W+ r6 q- B7 q/ rxn x to the nth / x to the power n 4 _2 Z0 L, z `) h* V/ u1 n' lx¡n x to the (power) minus n" ~) @% i0 B; |1 w" F
px (square) root x / the square root of x& w5 e, V; u% w2 ~* B
p3 x cube root (of) x + x$ C8 V4 M6 |- T+ zp4 x fourth root (of) x & x/ J$ U4 \( onpx nth root (of) x. o/ V/ U( b! k7 l3 u- h: m+ T V5 |
(x + y)2 x plus y all squared 0 f& [; Q- a, Q³x# c' I8 _* z* S
y( x* y- f2 t; p) F& G0 ]
´2. ~/ A: w1 j W- C
x over y all squared8 T. Q3 K0 _. J0 Y: @8 G+ w
n! n factorial9 t3 q+ r! x8 \- f4 s
^x x hat* f3 H6 M9 a# \$ O7 U- y8 n
¹x x bar 0 t9 M' n7 C# W! A; _~x x tilde% {8 T# B% l) [+ L; c
xi xi / x subscript i / x su±x i / x sub i 4 P/ V" {5 r. j: ^! O: t. X2 TXn ) J' Y$ G& m% B$ Mi=15 ~- z2 D9 }0 m& y* L5 V
ai the sum from i equals one to n ai / the sum as i runs from 1 to n of the ai' e$ y1 T1 E# F9 G" z& V4 {
4. Linear algebra * P, A1 c. G, \" A. \. ikxk the norm (or modulus) of x% }9 d$ k# H% H& ]( \# P5 S
O¡¡!A OA / vector OA & B# U$ n8 R- d2 p( D' e) iOA OA / the length of the segment OA+ K/ v3 h4 v# \5 ^# K4 @, ~" U
AT A transpose / the transpose of A + p7 v0 q$ C4 d4 S1 p& N y/ gA¡1 A inverse / the inverse of A. l' @1 ]' {3 Q, d
2, {0 l3 H1 \4 _8 W% I
5. Functions 3 K# c. b7 k; ?/ ~' k# m' ^. Bf(x) fx / f of x / the function f of x% d; f" {* X9 S0 r3 o
f : S ! T a function f from S to T + P- u1 a/ V% Q+ D& h0 y6 Cx 7! y x maps to y / x is sent (or mapped) to y4 |9 E' ~, N; n& b- _2 x8 W2 D- p
f0(x) f prime x / f dash x / the (¯rst) derivative of f with respect to x ( b0 W3 } c4 u! ]; ~f00(x) f double{prime x / f double{dash x / the second derivative of f with( m5 T6 U1 i! V, a
respect to x" U- i* f( S2 O( z
f000(x) f triple{prime x / f triple{dash x / the third derivative of f with respect y, e* ^% R! z5 {# F9 \. U. x9 K
to x n2 w8 f; K0 W4 u5 |) w
f(4)(x) f four x / the fourth derivative of f with respect to x- h- U! a# u+ t0 F
@f : o" J9 e! h6 P@x1! Y z5 G3 R, ?9 l
the partial (derivative) of f with respect to x1 + z* S3 d( l) p) p3 X% S, m, g@2f2 ^2 x' O, N u `' k
@x21 7 E3 [( F" U' `* j( p. n- n3 Dthe second partial (derivative) of f with respect to x17 h n7 F. l) @) z: M: P
Z ; ~7 G9 Q$ l6 y) F/ e* T" S1 - e( h. R5 i, b. k. j( q04 u% L. S+ w0 _9 N4 \) y- S
the integral from zero to in¯nity - w1 R, g; e9 g- Ilim5 K7 [6 Z; q: I
x!0 5 J' d* v0 A/ t$ m6 A; q+ Uthe limit as x approaches zero; ~9 Q2 H+ o) Y5 R7 C- f& E4 S' V
lim% D; q8 _% [2 t' q" ?/ }
x!+0 - X0 G- w! ^4 k; {" [the limit as x approaches zero from above 6 P7 b) a' o6 o( X9 ]! y" ~9 ?lim 9 ]# Y* s# _, [7 ^1 Gx!¡0) x1 ^/ n" ^& M) x' e& f9 q: C
the limit as x approaches zero from below; q2 r) L9 B4 N9 [- E
loge y log y to the base e / log to the base e of y / natural log (of) y. q+ L! o; v: a
ln y log y to the base e / log to the base e of y / natural log (of) y- Y7 @1 t6 l5 d# z8 Z6 I
Individual mathematicians often have their own way of pronouncing mathematical expressions " N3 [& ]( {0 @/ I- k5 F$ cand in many cases there is no generally accepted \correct" pronunciation. 0 @6 ^3 d% H8 \Distinctions made in writing are often not made explicit in speech; thus the sounds fx may( O! P$ ]( _+ n0 s Q
be interpreted as any of: fx, f(x), fx, FX, FX, F¡¡X!. The di®erence is usually made clear / Y: k. E$ v# y# j/ V2 Q3 C7 Sby the context; it is only when confusion may occur, or where he/she wishes to emphasise3 ]( d) o& ]; C. |
the point, that the mathematician will use the longer forms: f multiplied by x, the function / ?. z. }: f4 rf of x, f subscript x, line FX, the length of the segment FX, vector FX. n, @$ @( N7 T/ u- }Similarly, a mathematician is unlikely to make any distinction in speech (except sometimes 0 f8 n( T) u: L; V" }' B2 Ja di®erence in intonation or length of pauses) between pairs such as the following:" ]/ }+ j/ t+ w7 E
x + (y + z) and (x + y) + z1 Q- W# g! D& t6 s7 R+ [5 M
pax + b and pax + b & ^5 ~/ O+ c7 G# t. G4 O* Zan ¡ 1 and an¡1 2 m& G. g/ F4 \& V4 p1 `The primary reference has been David Hall with Tim Bowyer, Nucleus, English for Science 0 W# P* [3 ]% w3 B7 B" |% b6 S! Dand Technology, Mathematics, Longman 1980. Glen Anderson and Matti Vuorinen have , H' v+ t$ l$ E/ agiven good comments and supplements. ' X3 d6 I% E7 y8 s! X. x( Z3