Pronunciation of mathematical expressions 2 W" B: U; }* u/ vThe pronunciations of the most common mathematical expressions are given in the list $ ^9 r, E3 t# p) Lbelow. In general, the shortest versions are preferred (unless greater precision is necessary).1 _3 `4 o; j; G9 {
1. Logic' }2 q% d( i! k+ t. O
9 there exists+ v: |" o n9 c- `7 B
8 for all. x1 c9 V2 F: ~5 N0 V; Q& l, ]/ z
p ) q p implies q / if p, then q & t- k* u) q9 ~ `7 y) W' cp , q p if and only if q /p is equivalent to q / p and q are equivalent+ }9 _1 p* Z9 n
2. Sets7 P1 o; Z% g* |& e, W% C& i
x 2 A x belongs to A / x is an element (or a member) of A # P& t5 `$ E- X/ `+ ]' |0 qx =2 A x does not belong to A / x is not an element (or a member) of A : G* D2 k" I* d2 \( L& GA ½ B A is contained in B / A is a subset of B7 ~6 G; r" d5 f
A ¾ B A contains B / B is a subset of A# ?& W# H) |: D) ]
A \ B A cap B / A meet B / A intersection B7 ?6 P' K& B; T7 C$ N
A [ B A cup B / A join B / A union B 6 b0 z( o. J9 [% J/ EA n B A minus B / the di®erence between A and B( r; P' ~% D; ?& F# T
A £ B A cross B / the cartesian product of A and B1 ^0 D! Z8 Z' p3 v' Z
3. Real numbers% g t/ c* Q$ l' N; y( p
x + 1 x plus one / p( Q. l( p* Z W+ T1 Jx ¡ 1 x minus one 6 }1 D% o6 l0 U& c( ]% v ]x § 1 x plus or minus one. k% n' d# K( Z
xy xy / x multiplied by y9 m1 i( e" S- \3 t
(x ¡ y)(x + y) x minus y, x plus y) X& n9 T: L3 }: o# @
x 6 n# r8 K2 d n my # p, R1 P3 N. u# h7 q7 k+ `x over y1 \' `1 `9 ~3 b7 I
= the equals sign% ?( Q' G" ~6 F' C8 u
x = 5 x equals 5 / x is equal to 5 9 I' Y7 ~6 O. @* P. }x 6= 5 x (is) not equal to 59 p2 s7 L* _* u+ V" G
1- k f c0 R/ A* {2 L
x ´ y x is equivalent to (or identical with) y 9 E+ |5 N" n$ Z, t- sx 6´ y x is not equivalent to (or identical with) y% ? P5 v: w* s& B. O8 `1 m
x > y x is greater than y 4 u1 H( M- Q/ t2 Z: Jx ¸ y x is greater than or equal to y" ~7 Y/ C' ]$ x
x < y x is less than y $ S0 r+ x- n/ r5 z1 X/ h! Dx · y x is less than or equal to y$ s5 E9 b- F- G) N2 [8 Y# r3 U
0 < x < 1 zero is less than x is less than 1 * D4 Y R8 U a6 H: a0 · x · 1 zero is less than or equal to x is less than or equal to 13 v, P! N2 K ]; g+ f
jxj mod x / modulus x + T+ A0 l* }( Tx2 x squared / x (raised) to the power 2# }* \6 L2 W7 M# \. I. ]& |
x3 x cubed% I ~ R3 a- J
x4 x to the fourth / x to the power four) F( u1 k: O! s. v2 K
xn x to the nth / x to the power n 0 ]/ m: ]. S5 Z! fx¡n x to the (power) minus n ) j/ n! Q; }8 G& g6 ?1 O, wpx (square) root x / the square root of x * x8 S% t5 t& lp3 x cube root (of) x7 x# a8 t5 d$ Y e
p4 x fourth root (of) x4 e! f+ S1 O- ~+ f$ I( Y
npx nth root (of) x1 H# [: L R: p. s2 e$ g
(x + y)2 x plus y all squared% l' c5 j/ H# d5 {. B
³x+ b# v8 n* [) c6 T, E' ]9 U
y% [2 B5 E& }) y. y7 |1 D6 j4 ^( N
´2. Y# U6 V6 c) a, o2 n% N6 w
x over y all squared' |5 A, ~5 l d% J/ N
n! n factorial' I: ?$ w% T z# s& U& ^1 Q4 V
^x x hat 6 }1 u- p$ v# O# X4 _; G% l¹x x bar # }3 b1 e( x. x2 c5 o$ |6 Z. K# T~x x tilde 6 o2 b. k5 i6 X" zxi xi / x subscript i / x su±x i / x sub i 9 C% B2 S; O$ F; I- n7 l& o+ ?Xn 7 ? g% t0 N7 Hi=1& J- w9 M; X2 q* a' @; f$ L# y
ai the sum from i equals one to n ai / the sum as i runs from 1 to n of the ai * @6 I; W) N, U- P2 y4. Linear algebra " B! ?2 N4 C( \ kkxk the norm (or modulus) of x $ y# k) T, Z5 G+ w) \- WO¡¡!A OA / vector OA # z& P9 a- |* W* GOA OA / the length of the segment OA- `0 s' `: a& X( n+ d5 M7 q! v8 h
AT A transpose / the transpose of A ' H- U9 P' u, m$ v3 t; v/ ]A¡1 A inverse / the inverse of A 7 p' ^. A% B4 x3 W+ G2 # a! x7 b0 c; D% P# O$ i! k: [5. Functions ( F2 M C- t1 J. ~0 B& I. X) A6 s* hf(x) fx / f of x / the function f of x 5 I6 d5 d4 `+ q+ s* Xf : S ! T a function f from S to T, r0 K7 |* [& I; G; { G O9 I' H. A
x 7! y x maps to y / x is sent (or mapped) to y& O) b4 w0 }3 g6 O
f0(x) f prime x / f dash x / the (¯rst) derivative of f with respect to x% z. J! K8 P7 F% s# `, B3 W
f00(x) f double{prime x / f double{dash x / the second derivative of f with; A" y0 T! |. B, B( r
respect to x7 d* }% k' A% w+ G- A. S
f000(x) f triple{prime x / f triple{dash x / the third derivative of f with respect3 U; f+ t( ^! g) C2 r% f1 N, k
to x " `, p, T/ N+ u0 nf(4)(x) f four x / the fourth derivative of f with respect to x " n; p' s2 E3 ?3 H( W1 [8 n@f % W0 P8 h1 E1 H+ [* ~@x1( i/ O0 n V2 ^* n: O/ y. ^
the partial (derivative) of f with respect to x11 O) V2 [! T( Y2 {" N6 n
@2f; L2 r, A2 _4 Y( M" |3 |5 A, `" e9 y
@x21 r+ q5 w0 ?! V7 d3 ^/ T; sthe second partial (derivative) of f with respect to x1+ _7 X' V2 {- W% n" M
Z 6 F- [" U# m8 _- x4 H/ k5 l1 ' J, j8 p# V+ r. v, `2 q0 * B+ ?. u& P9 E7 R7 e) Cthe integral from zero to in¯nity- K' j, Z+ ?/ B; U. h
lim2 k, g4 N0 s+ a: T, z
x!0 0 Y! I8 h9 p- Y V* bthe limit as x approaches zero7 B9 S$ J- R# D2 M* L2 h
lim# e4 U$ I: {; E0 J9 B) S1 @
x!+0 " q4 w/ { m. j& lthe limit as x approaches zero from above# A7 S' H+ D" d6 R- J
lim 1 e" i8 W9 }7 a9 [" l+ _" ?; q Y) O2 dx!¡0 : V4 A$ j9 G o) |the limit as x approaches zero from below & o9 v, I( u- P2 y- w$ Hloge y log y to the base e / log to the base e of y / natural log (of) y $ R# ~# X; `% R# N3 Zln y log y to the base e / log to the base e of y / natural log (of) y5 `1 {" Y: ]( n, m0 p5 D
Individual mathematicians often have their own way of pronouncing mathematical expressions: p- t1 q1 I( o3 s6 C0 r5 j+ ]
and in many cases there is no generally accepted \correct" pronunciation." Q- ?, Z* M( I3 V9 g: T8 i
Distinctions made in writing are often not made explicit in speech; thus the sounds fx may 5 A& W9 R0 ^% ^/ R2 Y3 Z1 Ybe interpreted as any of: fx, f(x), fx, FX, FX, F¡¡X!. The di®erence is usually made clear + q B0 Y H5 H( F' {by the context; it is only when confusion may occur, or where he/she wishes to emphasise2 p; m% \5 _) b+ e( ]
the point, that the mathematician will use the longer forms: f multiplied by x, the function % {5 g$ k. W- y: Of of x, f subscript x, line FX, the length of the segment FX, vector FX.! i& u7 Q( s* O, g
Similarly, a mathematician is unlikely to make any distinction in speech (except sometimes8 J' t I; {: A
a di®erence in intonation or length of pauses) between pairs such as the following:- c' t) F" l& G& Y; @
x + (y + z) and (x + y) + z : l8 p/ h) u% y; Lpax + b and pax + b / f+ U& A; |. y ^* y; E9 pan ¡ 1 and an¡1 , E( _8 Q6 [% E: uThe primary reference has been David Hall with Tim Bowyer, Nucleus, English for Science 0 Q# w* |) ], P! K0 v7 Cand Technology, Mathematics, Longman 1980. Glen Anderson and Matti Vuorinen have ' K, @* G( n- M7 F3 ]9 hgiven good comments and supplements.. O; `4 `! \6 y6 n/ {0 ~1 c
3