Pronunciation of mathematical expressions 6 |" D4 v- r9 nThe pronunciations of the most common mathematical expressions are given in the list * x& G' i. |+ L4 Q- a4 F4 L/ ?below. In general, the shortest versions are preferred (unless greater precision is necessary). 3 g K% x2 N) T3 Q& X0 n1. Logic ' `! w. I$ x' U4 c M) O6 Q9 there exists ( W3 h0 K2 d3 i, w% ^* ^2 V- |8 for all8 e; D4 u0 P) h2 o i4 J
p ) q p implies q / if p, then q 0 ^+ ^' ^: J" [4 X8 o) k9 I3 t: ap , q p if and only if q /p is equivalent to q / p and q are equivalent . k/ x& D8 E! P+ w* o2. Sets" \; {7 G! X, V# i+ b5 k3 x
x 2 A x belongs to A / x is an element (or a member) of A$ t0 [8 ^) V5 V9 r" Z4 X
x =2 A x does not belong to A / x is not an element (or a member) of A % c( G* m5 i! [A ½ B A is contained in B / A is a subset of B; z( @7 t: y$ j# i8 t3 b* P* g `
A ¾ B A contains B / B is a subset of A # o7 n, Y7 }: U: [& lA \ B A cap B / A meet B / A intersection B . i3 |, S" n4 ?& @) @( m+ GA [ B A cup B / A join B / A union B ( W+ q Z, c- H: Z' mA n B A minus B / the di®erence between A and B 2 x2 N" _3 M2 H9 g4 u& h9 u2 nA £ B A cross B / the cartesian product of A and B5 A& [ f8 B0 b- b& \
3. Real numbers" J2 X' L, W, M* G" l( m
x + 1 x plus one) T y2 M; n$ U
x ¡ 1 x minus one 1 {7 I* W9 k; M/ Lx § 1 x plus or minus one 0 S: |8 y0 @/ I3 l7 h4 n# N9 L0 qxy xy / x multiplied by y 8 c- F7 ^) }4 u5 `! l( t(x ¡ y)(x + y) x minus y, x plus y: p7 k J. O! a
x 2 q8 }* H7 V9 E$ Dy) N% l/ B( R! T1 o2 D
x over y! p% g1 k; U0 D, p& h) {% ]+ `7 F
= the equals sign 2 J4 K/ H6 W+ N8 u @+ | @x = 5 x equals 5 / x is equal to 5; Y8 [4 g6 a# e% [9 R8 j% }
x 6= 5 x (is) not equal to 5 % _& ~ v$ d5 l8 Z# C13 s6 v# f: t# m' k4 v1 E
x ´ y x is equivalent to (or identical with) y ( M7 |6 S# a( g( J$ N8 Y" ux 6´ y x is not equivalent to (or identical with) y - ]- R0 o" ?' z* W, R l; h8 jx > y x is greater than y7 _- Y) k7 s6 F
x ¸ y x is greater than or equal to y $ z7 d% ?% ]. J) p- ox < y x is less than y + p1 [5 V/ o. {% D8 N6 e7 e9 v2 H2 u2 Ux · y x is less than or equal to y : B: a* f: K5 l. z9 J0 < x < 1 zero is less than x is less than 1 6 d1 z2 n# ~2 C3 m M& y0 · x · 1 zero is less than or equal to x is less than or equal to 1 5 K( T) K- S$ f) u' ]jxj mod x / modulus x + I& o4 Q$ B ^9 V- z! k2 G( dx2 x squared / x (raised) to the power 2. e/ g$ V! {1 M ~
x3 x cubed " z% M# I6 D4 Z! g ?x4 x to the fourth / x to the power four 2 q' k3 i( w' l' m! ^; |. Jxn x to the nth / x to the power n7 x* N: S* c$ t U
x¡n x to the (power) minus n' ] \( F8 d: q/ Q9 F v+ y
px (square) root x / the square root of x9 }- @- I2 F. O% H% r* T5 f& v
p3 x cube root (of) x 9 d! x1 U* \$ w1 m% a9 `p4 x fourth root (of) x 8 y: o5 J5 I' y' @3 p4 D) Rnpx nth root (of) x' y# X* B/ h' U# e
(x + y)2 x plus y all squared ! x* y4 z+ H1 L% Z3 }³x! B3 W5 I9 Z, l$ n4 k
y + ?6 R1 _3 f+ e4 ~8 j´2 1 V# U: D* ~" e' |x over y all squared + ?+ Y% r' x$ \' ?n! n factorial" @, u8 Z& m& r8 w1 l( O. K9 O
^x x hat& l5 s2 W6 {. ?* o+ y
¹x x bar : r! I, O9 \& _9 X) A+ x; N4 X& V~x x tilde 2 M( s1 |9 s# N2 k, X8 \xi xi / x subscript i / x su±x i / x sub i6 F! I; U/ K1 \
Xn % }* `! z- c, B% D6 i: Fi=1" u8 U/ S: x; L! \' V+ m$ |' I
ai the sum from i equals one to n ai / the sum as i runs from 1 to n of the ai : Z' ^( @' ]( m$ w8 @! Z4. Linear algebra 9 o( s4 b& W' X% i# e5 l9 X$ mkxk the norm (or modulus) of x, N* Z+ M; C& M7 {
O¡¡!A OA / vector OA/ U! R' G1 }5 j+ ^7 r& {
OA OA / the length of the segment OA : j- ~9 B' J' H$ gAT A transpose / the transpose of A1 P- }0 Z3 a3 Y8 a. c
A¡1 A inverse / the inverse of A ; ^- b# u( U- a' W. P) r5 q2 % m9 o4 E, E, m: |, l# t* @/ d5. Functions & B# H( M- _; ?" |! \, qf(x) fx / f of x / the function f of x " Q$ _1 F# ?, E7 sf : S ! T a function f from S to T, @0 v+ w) I! e( i) W0 D! I& U
x 7! y x maps to y / x is sent (or mapped) to y6 R7 ~/ o( |' L+ D8 q
f0(x) f prime x / f dash x / the (¯rst) derivative of f with respect to x 3 @6 o: c! I1 h. h) W" G9 ^, ~f00(x) f double{prime x / f double{dash x / the second derivative of f with. M9 Y5 ^, Q) V+ x( N, f/ r
respect to x/ T: W, E; R- h, a4 Q
f000(x) f triple{prime x / f triple{dash x / the third derivative of f with respect # u% n8 i2 W+ x# x6 L2 `to x8 v( E+ {' o: ~% j3 R# j
f(4)(x) f four x / the fourth derivative of f with respect to x9 p: H7 {0 n4 y* W, W9 x( }
@f8 O0 b3 o5 m4 i! o1 q
@x1 W' E0 \9 p8 f6 N; T8 A! ?
the partial (derivative) of f with respect to x16 c- d. U k1 p! i. e
@2f- ?0 F3 p4 v D' D" u$ e, t
@x21! Q. r$ J7 t5 ]: p
the second partial (derivative) of f with respect to x1, r2 k9 m$ O% i3 Z* A% N( \) a1 b5 D
Z2 V, r5 z3 j$ D
1 & |: K- i5 }& v6 j: u0 0 c) [+ G1 C6 uthe integral from zero to in¯nity7 ?" Y) e( r9 q
lim 3 h, B' k( U, O Ax!0# Y- w/ q% C. d1 F7 w0 P# f- B
the limit as x approaches zero* v$ I8 [: r$ o4 E
lim ) v8 M& U" V' _5 rx!+0 8 i. k8 o2 F6 m/ Y; Ethe limit as x approaches zero from above# [: h* z* U$ m% W/ o& y, V8 e
lim0 z& y, j I, s' W. O, ]) i
x!¡0 $ i0 G+ q$ a k, D4 s l# U8 \' Cthe limit as x approaches zero from below 9 u: i$ u/ H7 ?loge y log y to the base e / log to the base e of y / natural log (of) y0 I8 y( [8 L) Z- Q. a4 o8 e$ F {
ln y log y to the base e / log to the base e of y / natural log (of) y% K J2 i& _ D9 x" y3 N
Individual mathematicians often have their own way of pronouncing mathematical expressions) `$ v4 q5 q9 B* |, E0 p H
and in many cases there is no generally accepted \correct" pronunciation. 6 b, \0 y& L3 B3 r0 G3 U, ]" R( xDistinctions made in writing are often not made explicit in speech; thus the sounds fx may + l) |6 P& l5 Ibe interpreted as any of: fx, f(x), fx, FX, FX, F¡¡X!. The di®erence is usually made clear9 w: N0 l" d5 w y
by the context; it is only when confusion may occur, or where he/she wishes to emphasise. F6 b1 s1 V6 q+ b6 D1 O$ I
the point, that the mathematician will use the longer forms: f multiplied by x, the function6 a* [9 X6 ?' g- @8 |
f of x, f subscript x, line FX, the length of the segment FX, vector FX.2 |5 U6 G7 x6 Y, m# A: h' D! l: Q: C
Similarly, a mathematician is unlikely to make any distinction in speech (except sometimes0 o/ H) z# _' A1 D+ z; {* t
a di®erence in intonation or length of pauses) between pairs such as the following:5 E4 m1 B5 M4 G2 Y
x + (y + z) and (x + y) + z / a2 ~6 N# `6 G: r% Y+ Q- V( Rpax + b and pax + b 0 c B0 \4 g# I3 K, j3 Tan ¡ 1 and an¡1; y+ r) _4 ]( H% T/ S
The primary reference has been David Hall with Tim Bowyer, Nucleus, English for Science + o4 s; e5 e% vand Technology, Mathematics, Longman 1980. Glen Anderson and Matti Vuorinen have, Z- G/ z3 b2 b7 b: O! p9 n
given good comments and supplements.$ |; U, K: q: z: l. }8 V$ h
3