Pronunciation of mathematical expressions1 j$ ~6 x9 j, N, U! g
The pronunciations of the most common mathematical expressions are given in the list ' @1 Z/ e+ a/ E- g w0 d9 u9 Gbelow. In general, the shortest versions are preferred (unless greater precision is necessary).: D' w1 }# w7 X- E9 o+ y
1. Logic / u* y% p1 ]( H* ~: C0 l, |9 }9 there exists $ Z& m* B% q9 ?7 `$ {+ j' H8 for all0 I1 l0 Z* l u! C# W
p ) q p implies q / if p, then q , ?+ k: k6 h t. R2 ]) o7 Vp , q p if and only if q /p is equivalent to q / p and q are equivalent : V; }: l0 C) J9 z H2. Sets, ^0 L. n1 @0 M
x 2 A x belongs to A / x is an element (or a member) of A 1 h9 Y& h) }. Z7 a+ \" |9 C7 Nx =2 A x does not belong to A / x is not an element (or a member) of A# a( y/ t! e7 @- i8 r+ @
A ½ B A is contained in B / A is a subset of B 3 @) I9 N- k: I% b8 c6 AA ¾ B A contains B / B is a subset of A) ? d8 m. J: w
A \ B A cap B / A meet B / A intersection B8 \* J) y) S3 G1 Q( r6 `* T
A [ B A cup B / A join B / A union B7 s. v3 G. F+ \) W0 Y
A n B A minus B / the di®erence between A and B ( |- q- C) s8 q% O: DA £ B A cross B / the cartesian product of A and B3 X0 D/ {; R& P4 M* m; y
3. Real numbers ) W1 J% ^3 Q; Gx + 1 x plus one! H& A, ?! O: Y
x ¡ 1 x minus one/ Z: ~) d( b2 X2 m' A" S
x § 1 x plus or minus one 8 p! k8 d5 o% D( \3 `xy xy / x multiplied by y ; {3 i1 M! Z+ Z(x ¡ y)(x + y) x minus y, x plus y8 U1 I U2 ~0 f9 V, m# j( m9 Z
x # R$ G3 d# Q) Y! W3 }/ I1 Ay 3 s* F9 }+ m7 X- n' R8 G/ Mx over y - ^! \" a( o' _2 C= the equals sign , \ F8 G& D0 X% e/ i7 o7 v9 Lx = 5 x equals 5 / x is equal to 5 , W( ?! h3 `+ Dx 6= 5 x (is) not equal to 5 8 j: K7 Y- V4 M. E+ w1 & G* v" ]" {% k7 m8 L* |x ´ y x is equivalent to (or identical with) y F8 p& L9 M1 ~* y( `4 [9 J
x 6´ y x is not equivalent to (or identical with) y # f9 k& v: _6 M. F* Vx > y x is greater than y 4 o6 l1 ^$ K, W# Ox ¸ y x is greater than or equal to y3 q g0 X. R7 ^& ~* y- q+ F
x < y x is less than y6 @- V( d7 b! k) o1 y. U
x · y x is less than or equal to y9 i+ M, X W/ Y+ j- R& Z
0 < x < 1 zero is less than x is less than 1) o# f$ z3 Q2 E* @( z
0 · x · 1 zero is less than or equal to x is less than or equal to 1 3 r* B, w8 @0 k. {9 @3 L; g4 y& mjxj mod x / modulus x % K. y# ^+ ~3 kx2 x squared / x (raised) to the power 2 z6 K! V! D/ T7 `/ ~+ b$ s
x3 x cubed # m. @1 J2 [( e( O! W3 Jx4 x to the fourth / x to the power four 6 e. g7 B% p4 n$ Z7 ?9 Cxn x to the nth / x to the power n) z- M# W& \" ]0 u6 m& H' h
x¡n x to the (power) minus n; t4 ?4 d$ i1 m/ I
px (square) root x / the square root of x 5 F% x( {/ Y2 s" ip3 x cube root (of) x , c3 t* {3 w/ v4 C1 w3 Q sp4 x fourth root (of) x3 p E6 Q6 e+ E9 q
npx nth root (of) x- Z/ h: F0 F6 K, h0 @: `
(x + y)2 x plus y all squared" @" B7 p- g( y. R4 O; Q
³x ( I; }8 e$ b5 I! r hy / g' v' O; C- \8 r/ K( q´2. {7 o2 x( y1 j, s
x over y all squared, e/ |' h* J1 S# h
n! n factorial( B% R! V3 T/ o! G
^x x hat' V; F& d6 _. g; ]! P8 }7 |" _
¹x x bar4 X9 d8 w! F7 n# }) Y
~x x tilde: N8 Q* [6 E0 M: B; X" |
xi xi / x subscript i / x su±x i / x sub i 4 |4 L1 S# G; l1 ?$ I0 L# S1 pXn; L6 b4 x6 ? s! Y1 l! n8 l# V
i=1 5 f7 g4 ~" a; _8 s. o4 Nai the sum from i equals one to n ai / the sum as i runs from 1 to n of the ai, D: s2 O2 y8 N* h. V
4. Linear algebra- P5 X H5 l# e+ u. N
kxk the norm (or modulus) of x& J2 `& s0 N! a: J! t$ B
O¡¡!A OA / vector OA" r y" d& J5 c/ f0 g J% z
OA OA / the length of the segment OA5 i, G- I$ A4 t% }1 _
AT A transpose / the transpose of A # c8 ?( w5 m' Q7 {- F, XA¡1 A inverse / the inverse of A ( M; v' h! ?1 h$ E |1 Z+ R* L3 p2 7 L$ X( ]+ S% W- f4 ?+ y5. Functions S7 m0 N5 y* _5 l+ v
f(x) fx / f of x / the function f of x2 X7 ^# w' P& k. n* V* K' N- y
f : S ! T a function f from S to T6 i+ \. c; T2 }4 L' j
x 7! y x maps to y / x is sent (or mapped) to y# g/ e: i+ V2 x; n' C0 {
f0(x) f prime x / f dash x / the (¯rst) derivative of f with respect to x , q: r$ I, o: X- X# a& }$ zf00(x) f double{prime x / f double{dash x / the second derivative of f with" a" M$ ~! Q0 ?, U; e% v, t8 m
respect to x$ F& I; `% x; z( H# Q+ k
f000(x) f triple{prime x / f triple{dash x / the third derivative of f with respect) _. o$ U( W& C- n# C
to x $ w4 Q' ?4 \2 mf(4)(x) f four x / the fourth derivative of f with respect to x+ M+ R1 d( N: F$ Z1 k' n7 v
@f - r @$ y8 U* b0 Y8 e: b@x1" X* K3 ~" b- \6 ?% ~8 \4 l
the partial (derivative) of f with respect to x16 H1 p4 B, U6 ?6 O
@2f- M8 ~% \, |: Q p
@x212 s9 }7 H8 N6 |2 n8 W
the second partial (derivative) of f with respect to x1$ r' N9 f' z' l# A; h. O
Z% r5 y. l& u$ I. U# C
1 ' R t& ~% l0 w2 d; H) l05 \3 g$ P. {4 x& [7 y
the integral from zero to in¯nity/ m, I3 k6 V* i* x9 i6 d# a
lim! R v( `/ c: q& ^. ?& Z( F8 j
x!0 7 }9 q' x% m6 o- [2 Jthe limit as x approaches zero ; E- s1 @* n; slim $ c8 O& p% |6 S" L5 U" zx!+07 f: e, ]$ y6 c! j& M; b! s
the limit as x approaches zero from above ) R4 h: z5 A+ Z; qlim2 z5 n: \0 b5 Y# _1 a4 u9 h
x!¡0$ q: T1 K" R; b2 C! a( e
the limit as x approaches zero from below . N9 ` |! p3 j: z6 f' [) hloge y log y to the base e / log to the base e of y / natural log (of) y ( }5 ]- F$ Z. r% `+ c0 \+ T0 a: vln y log y to the base e / log to the base e of y / natural log (of) y " X% @, ~. z3 i- O' v2 Q9 FIndividual mathematicians often have their own way of pronouncing mathematical expressions ) D2 n$ ~4 b4 ~! [9 o- i* }2 \, a( W8 ^and in many cases there is no generally accepted \correct" pronunciation. " `% q7 Y' y: U/ |8 y) l! yDistinctions made in writing are often not made explicit in speech; thus the sounds fx may2 D: M u% ?2 Q* U7 m& I! y- `
be interpreted as any of: fx, f(x), fx, FX, FX, F¡¡X!. The di®erence is usually made clear& D5 f9 w# o0 T* M$ W8 M
by the context; it is only when confusion may occur, or where he/she wishes to emphasise6 ^8 H" \/ P9 _1 _/ D0 S- G
the point, that the mathematician will use the longer forms: f multiplied by x, the function$ e r+ k t" k5 F
f of x, f subscript x, line FX, the length of the segment FX, vector FX.& g/ C. j, F& G0 {# V
Similarly, a mathematician is unlikely to make any distinction in speech (except sometimes 7 G- x' y0 V0 Z$ U0 e" \$ Ya di®erence in intonation or length of pauses) between pairs such as the following:. d& U' [: \3 R# g6 |1 @4 x2 S
x + (y + z) and (x + y) + z: J$ I1 f+ C' G1 j2 y
pax + b and pax + b 7 y2 K; ^+ y* v% T) @; P6 [2 [an ¡ 1 and an¡19 @2 j' j) @1 p# c
The primary reference has been David Hall with Tim Bowyer, Nucleus, English for Science/ I* D! j A$ E9 |" o5 I; f$ j* v
and Technology, Mathematics, Longman 1980. Glen Anderson and Matti Vuorinen have ! t6 o5 r) @1 O2 l0 qgiven good comments and supplements.7 Z) `: f# Q$ r( R/ O
3