QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3263|回复: 4
打印 上一主题 下一主题

311数学结构种Mathematical Structures

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-12 13:19 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    % p; [& ~: c5 v) m
    6 E- I6 x9 ]" _7 J8 _! [
    Abelian groups     Abelian group% A8 j$ |# |- c, g3 k
    Abelian lattice-ordered groups
    4 m0 j$ y9 V. t- O4 y0 JAbelian ordered groups
    " L- q( c# ^3 C+ J$ [9 QAbelian p-groups
    0 o' _% n$ r4 C2 S& d+ T) M9 L0 {Abelian partially ordered groups
    ( R0 L+ M5 ^9 z, b! r; J5 p% BAction algebras     Action algebra
    + o' l1 }. F0 IAction lattices- C1 a1 U$ ~3 D2 O: Y- S
    Algebraic lattices
    9 c' Q0 o/ C' d4 `! pAlgebraic posets     Algebraic poset  e. M5 r: p. _" a# j
    Algebraic semilattices
    % N$ x& ~8 `" S$ uAllegories     Allegory (category theory)0 x; U& c/ ^4 P; C3 g
    Almost distributive lattices
    $ N( t( Y. q5 `  |" w1 bAssociative algebras     Associative algebra; d, a+ }& W: I, p  C! F
    Banach spaces     Banach space& n! M9 \1 e2 H
    Bands     Band (mathematics), Finite bands% S' g2 _2 p+ v
    Basic logic algebras
    , G5 _8 S) r6 BBCI-algebras     BCI algebra
    " w' U: M3 m- xBCK-algebras     BCK algebra$ O  m( `' t$ z; W& b6 f" w
    BCK-join-semilattices
    ( r8 _% v* f  ?+ j7 ?BCK-lattices. A) F7 }+ ~  {0 l; J  {! Y
    BCK-meet-semilattices7 I4 }6 K0 E) h8 a; |* }
    Bilinear algebras
    2 H% l* Q5 \' O1 H; v3 t, ?& |BL-algebras
    8 Y( c) g# A# D* W4 T8 XBinars, Finite binars, with identity, with zero, with identity and zero,
    % V# d3 Q* D% T3 w+ rBoolean algebras     Boolean algebra (structure)
    , a7 m2 {1 z% A. ^7 E) WBoolean algebras with operators# A" D0 k0 c" k; c) {
    Boolean groups) \/ K( K$ c/ T
    Boolean lattices# K7 o2 G4 @* U
    Boolean modules over a relation algebra( l6 K4 l/ ~/ m9 u, M* f  l
    Boolean monoids" g! X5 M; t% I$ z2 p3 ^. d
    Boolean rings
    ) ], e4 C& G7 K6 C3 D# IBoolean semigroups) b5 m0 E8 }# i/ G# b2 m1 h
    Boolean semilattices9 d" Q6 ~1 Z, w2 e
    Boolean spaces
    * f/ v/ T& H; R& Q, F2 TBounded distributive lattices
    9 [2 K" W: a" S$ S* ^% ]2 hBounded lattices
    ; N/ E. k" {  M" _7 eBounded residuated lattices7 k  C% R* I$ {/ u' t1 w$ D
    Brouwerian algebras9 @, u2 I% O+ b8 h# c$ {3 C4 d
    Brouwerian semilattices3 p3 c9 Y. g% j# p. r7 U
    C*-algebras
    % {. W& a8 B. ]- x% W5 }( ?Cancellative commutative monoids
    6 B' {! {6 J8 CCancellative commutative semigroups
    . l9 a6 c6 }) B& VCancellative monoids
    5 g4 z! z, O# J: S, @& XCancellative semigroups8 B. L, Z3 E# c
    Cancellative residuated lattices
    & ?. W8 V' ^8 d: c9 U2 oCategories+ ]% d0 {$ v$ v' p
    Chains) z) T. F1 W2 j' X% T% V: ]5 s
    Clifford semigroups
    3 m! L6 q  T$ I" \Clifford algebras
    6 \: L4 f" \$ W$ CClosure algebras9 _4 _& w1 a) V) \
    Commutative BCK-algebras
    - l/ X3 F, d: g+ DCommutative binars, Finite commutative binars, with identity, with zero, with identity and zero 3 t( T  X6 l2 w/ F5 D
    commutative integral ordered monoids, finite commutative integral ordered monoids
    . N  L7 t; |' P6 K6 r5 U/ d; XCommutative inverse semigroups
    0 ]4 ^5 @+ `+ T, b& SCommutative lattice-ordered monoids4 N' l& L$ d, E1 k" d. d* g5 R
    Commutative lattice-ordered rings* C- d4 T2 L, f
    Commutative lattice-ordered semigroups
    * ]! U( N* y& G* r- wCommutative monoids, Finite commutative monoids, Finite commutative monoids with zero; k8 f5 o" y6 P1 b$ @. n. `) v
    Commutative ordered monoids. N5 a! E' p6 E% D3 @2 _# K
    Commutative ordered rings5 U: Z% ~& S4 w' [& d: V2 a* j+ B
    Commutative ordered semigroups, Finite commutative ordered semigroups
    5 s) i: Q5 Q. C$ C+ MCommutative partially ordered monoids+ y2 o: U( W3 R
    Commutative partially ordered semigroups
    # ]+ }/ J! o: m$ U  w6 o2 _Commutative regular rings, n( d7 H7 v, i7 `! |! c
    Commutative residuated lattice-ordered semigroups
    $ r# y/ y4 L& |: k! _  R) l- ~Commutative residuated lattices
    * J7 d6 u. B  S* LCommutative residuated partially ordered monoids
      T3 f3 y5 @, K% a4 p/ y, \Commutative residuated partially ordered semigroups
    + l' q/ f" o3 {* T/ lCommutative rings
    1 `) T, S. d7 ~* @  [/ B, I7 [Commutative rings with identity
    & G6 G; H  G  FCommutative semigroups, Finite commutative semigroups, with zero
    : V: I0 u5 z3 ]5 G+ y& p0 e# HCompact topological spaces1 R- a5 U  x( z+ a/ |
    Compact zero-dimensional Hausdorff spaces
    " W0 c$ R6 b) S& B7 b; p& ]Complemented lattices
    % E0 n4 L: S5 e0 ~3 \Complemented distributive lattices
    ( f" u' ~: {2 e9 @# U& Q- sComplemented modular lattices: R7 U* v: y8 k2 |4 V7 |
    Complete distributive lattices/ {  y* j* U/ z* n; ?
    Complete lattices
    , {0 X( X5 ]' [% sComplete semilattices; L" e# x4 ~% v: s2 T$ C
    Complete partial orders4 I6 b: v) N" @& ]( i- X
    Completely regular Hausdorff spaces
    : t+ X8 C3 ~5 ]0 l  B; m& JCompletely regular semigroups
    ) R0 ]# l1 t, q% Z& `& Z  fContinuous lattices# \2 P7 }1 M  [' O3 F$ i3 Z8 Q
    Continuous posets
    * E" o$ k/ T9 I! P4 dCylindric algebras
    ( u0 L2 a, P- V' kDe Morgan algebras
    0 c  g8 a% a+ v  S$ @; _De Morgan monoids: @, v5 `2 }1 V6 j: ]
    Dedekind categories, G3 x  p9 b) x( H% R5 o" b8 ~7 h
    Dedekind domains
    " W1 |  ^% b9 b" u3 D" zDense linear orders
    ( i5 d3 g- |. l* ?3 r  A8 NDigraph algebras6 Q% N( F' H! }
    Directed complete partial orders
    3 v& y( Y+ x5 T: w3 `Directed partial orders
    ! f  b* s/ J' C: \' S9 ZDirected graphs
    ) K5 k* L) `+ MDirectoids; Q! C7 e: R& o: v" f! W! @! o
    Distributive allegories
    ; J3 o4 f. v" Q  G$ D) XDistributive double p-algebras
    3 Z' e" |' f2 S# u  z% oDistributive dual p-algebras" ^2 P& ?) N. ^5 j7 w' U( L) m
    Distributive lattice expansions
    . ^; I" G" f5 I7 V# }5 DDistributive lattices
    5 C7 @  F' O8 y3 x8 {Distributive lattices with operators% o4 U" T/ _1 b6 i# G
    Distributive lattice ordered semigroups
    ! x. `( q; ~4 u! q- x+ K( J! \Distributive p-algebras: [% \3 K! K% Y+ x* Q0 G1 ?- b
    Distributive residuated lattices
    9 d$ t" u9 u5 N- XDivision algebras0 v* K- Y+ ]" w7 `" u6 K; y
    Division rings( D9 o# z) K4 k) @/ ?+ F8 l3 c0 ~
    Double Stone algebras
    2 S, l9 S4 y6 Q, y& FDunn monoids
    ; `( B' g7 Z- W% P" MDynamic algebras
    . _: {+ f3 ?9 A" j, t( |" e) |Entropic groupoids
    % A5 A1 X7 j& [5 ^Equivalence algebras
    / L/ [4 w. R! G' M! ~( Z0 XEquivalence relations
      p  W& K9 Q# h: L% gEuclidean domains% a# D6 K3 x9 v4 g8 C
    f-rings
    . d  o) H1 [& y* I0 ]Fields, n4 k+ D' ~6 }5 @0 ]- [7 [) c
    FL-algebras
    4 K. S$ Z7 ^8 iFLc-algebras
    , c$ j0 r8 J, a) |% sFLe-algebras/ p' x$ ^1 F" @: Y6 V; Y
    FLew-algebras2 a& ?+ Y$ ?! p- X. ~
    FLw-algebras+ f7 P$ q9 a8 `, O
    Frames" F9 v' ^- x- v* N  Q
    Function rings2 `6 U+ V: i: g; G, _
    G-sets
    # O  a5 H8 x: i& HGeneralized BL-algebras8 @/ h. |6 n- i2 q
    Generalized Boolean algebras
    ' \9 a8 ^: l7 G) NGeneralized MV-algebras
    - i, C; [; u7 T- P& R& CGoedel algebras' z# Y! ]: S4 i* t
    Graphs
    1 G' `2 K4 D/ S  u' OGroupoids
    ( |8 `" ^1 u  m. v2 c# w: TGroups
    5 a5 n' s8 |- ^# _  r: n" T7 d3 \Hausdorff spaces3 m5 F4 P# p( ?; \0 ?
    Heyting algebras2 h+ h# C6 I0 M" H2 z/ B
    Hilbert algebras
    + ~1 U2 p% O' H) `3 @5 gHilbert spaces1 c) O. {" @0 I6 F: L
    Hoops# \/ H1 o' w  X+ h# o
    Idempotent semirings
    " y) f) t* M9 ]% bIdempotent semirings with identity
    & y) ?3 n9 Y4 C" N! s' gIdempotent semirings with identity and zero
    5 n& N" I  f8 ]$ f% {) I2 eIdempotent semirings with zero5 N* n2 J* W) s  g8 U
    Implication algebras
    , I- D1 O( h  n5 QImplicative lattices
    % n6 L$ `. Z! D( G) `6 E2 `3 qIntegral domains& D- M5 t8 Q$ l2 Y6 i! p3 }. P. b
    Integral ordered monoids, finite integral ordered monoids5 d5 D5 a7 r7 ]' W  W+ S, R
    Integral relation algebras# f5 T$ d3 H. y6 ?/ _
    Integral residuated lattices
    , M& N, N, f1 M& D* _Intuitionistic linear logic algebras" _3 C( M; ]/ I. Y/ F7 V
    Inverse semigroups& N" ?% a1 Z  @4 I8 W
    Involutive lattices8 B! l3 X  D& P+ S1 i3 m, t
    Involutive residuated lattices
    ( n' w5 E6 S1 f; R# P! O9 K1 n  r5 ZJoin-semidistributive lattices: C2 Q; S# }! A8 w- Y" M
    Join-semilattices
    " A- K* |+ a# e2 m7 t2 \Jordan algebras
    " q) ?9 e# o3 ^Kleene algebras" L  K. ]* P/ N! M0 X0 n
    Kleene lattices
    % s, Z* ]( [7 n% kLambek algebras/ g; y0 R  S0 a* I. i
    Lattice-ordered groups
    . g3 {, ?: D  A/ a; ~Lattice-ordered monoids
    9 u% `9 y% H& v( t' LLattice-ordered rings. p/ T5 q# B  }7 C( k
    Lattice-ordered semigroups: H0 U' K; ~" h6 d8 s
    Lattices
    0 X% H, N2 i! @; oLeft cancellative semigroups
    ; T5 r2 |1 G8 |5 [% \1 T; Z- dLie algebras* e% `- h  c: f$ x$ C& F& T
    Linear Heyting algebras
    - d, u9 M0 @8 O( pLinear logic algebras
    7 e( t" a3 `2 {7 yLinear orders6 w, Y/ p' I* F2 i2 u
    Locales
    ; M8 {4 O! \0 \+ I! ^Locally compact topological spaces
    8 v9 d) C# K! B! QLoops
    / p2 ]& x- |! u) F3 XLukasiewicz algebras of order n/ R% l( }  A$ a' ~
    M-sets
    2 ]/ g' _# ]) o* TMedial groupoids$ S0 C6 V  n- l: D; I
    Medial quasigroups
    $ I* j9 F' P2 `0 p6 IMeet-semidistributive lattices+ d7 D1 O7 ?( y; ?8 F  D+ G
    Meet-semilattices& P9 N/ [& \0 d6 N( Q# P
    Metric spaces) m) H' |2 M& h/ e. v8 @8 F; l
    Modal algebras2 X5 u0 ~( ~8 _, d3 _4 K, I
    Modular lattices4 ^: W, O& s( V" P$ z+ ^3 D
    Modular ortholattices
    , W# V: d9 @% }Modules over a ring+ \. E% F+ s' T) H
    Monadic algebras+ [" L: M3 C0 j8 f
    Monoidal t-norm logic algebras
    + B$ G2 m1 Z! S: tMonoids, Finite monoids, with zero
    * A! Y8 d7 t; |1 R7 @. AMoufang loops
    ! R3 k, Y2 M" y! O7 OMoufang quasigroups
    % E% Z# l. l+ Y! nMultiplicative additive linear logic algebras/ b' ^  D, J5 O
    Multiplicative lattices
    / I5 ^4 n* f) o% z, a; c, EMultiplicative semilattices) f# a4 j! ^  B: d1 w1 g1 M) }
    Multisets# U9 z- ^7 i1 m& Q+ j6 Q! I" ^
    MV-algebras
    9 Q7 E. V- R1 G8 p- eNeardistributive lattices- R4 M  r: V# O: Q; e7 |+ x! Q0 u; v
    Near-rings& `" Y. L5 `; J& j- _( s; x3 O
    Near-rings with identity
    . }: W( b  ?6 p! FNear-fields6 u8 t$ |$ y% h* n3 M
    Nilpotent groups9 E# w" C" {7 f3 e) O
    Nonassociative relation algebras% W! A; B+ X# G& g
    Nonassociative algebras7 u; b! H! k7 T2 x7 g' g
    Normal bands7 R1 z; s1 x1 D0 o5 O
    Normal valued lattice-ordered groups
    0 R4 N+ o+ V: }) F5 n8 QNormed vector spaces
    ; J/ I' R/ L7 R2 l6 i1 l& ^Ockham algebras/ s$ N* W( h0 }. q7 `
    Order algebras9 T9 j8 y' j- g* c9 `; J
    Ordered abelian groups2 r( D- i" W- ~) P+ ~
    Ordered fields
    5 Q) z  {6 I* Q( q" VOrdered groups
    8 u0 }+ I, U% j0 x- E( X7 AOrdered monoids# f2 K# E. r/ B4 o0 m
    Ordered monoids with zero
    6 m1 F. n1 m# v! FOrdered rings. y$ D5 ~0 h; Q+ Q' W% o
    Ordered semigroups, Finite ordered semigroups, Finite ordered semigroups with zero7 q$ p2 I& M8 N7 z# T: k) W$ @
    Ordered semilattices, Finite ordered semilattices; J0 S) e, Q8 p# n. [3 X* f$ A( }
    Ordered sets. m. d4 B) L( ]8 ^
    Ore domains
    / i- B! B9 r5 o! i8 u1 bOrtholattices3 X/ |+ A; S9 e& I$ [+ _
    Orthomodular lattices8 K$ f1 J' d" x$ U: w  p8 o) Y( g
    p-groups
    ) N, S4 V0 \% F6 QPartial groupoids
    7 W0 w' [! K7 }Partial semigroups! B+ O9 H8 O2 E) _* M
    Partially ordered groups
    ( S0 X' G7 k" z$ s+ PPartially ordered monoids
    ! Y$ O/ F1 F2 J8 x' R$ J& BPartially ordered semigroups3 M, f9 z8 a+ a6 L% e( D
    Partially ordered sets5 x6 |9 P4 }* G8 O2 ^/ `* x
    Peirce algebras
    4 e8 r; I/ T: u7 h9 M! nPocrims. N4 S8 h/ P# L
    Pointed residuated lattices  s3 r0 }. F4 s
    Polrims
    , n8 g& M4 o! a* ?Polyadic algebras8 r3 ?' K; x/ w. t' C6 I: w
    Posets- U7 W/ v) A/ C! Q: N2 Y0 m2 i' _  t! O
    Post algebras
    1 q. }, P  {, w) k: j$ _$ P( O1 ^# [Preordered sets
    % b0 z1 S5 a1 p& M5 b' ~Priestley spaces" q  H% J/ O% B8 |
    Principal Ideal Domains' C. s9 h/ L8 E1 K0 V' w
    Process algebras; x' D2 E  j6 L. w1 r
    Pseudo basic logic algebras
    , S4 E4 Y; G" y8 g- o7 `, bPseudo MTL-algebras# |4 u8 @! z- \. S
    Pseudo MV-algebras
    2 @' Q3 F' ]/ S+ ]3 }! }6 |9 KPseudocomplemented distributive lattices
    0 A$ j5 ?* O/ H3 t% @) `Pure discriminator algebras* M. i8 _2 |0 ]
    Quantales( C- z1 `7 a% ^  ^/ S6 M
    Quasigroups. c$ g; e; X9 R1 Q+ k
    Quasi-implication algebras6 S" t# E+ A1 k
    Quasi-MV-algebra
    ! j8 x& U2 ~1 _" Y/ pQuasi-ordered sets! Y7 n$ q4 a: _1 n
    Quasitrivial groupoids
    # h: w. o! s! k1 [Rectangular bands
    - ~  z) Z5 w+ BReflexive relations6 h0 X& Y* ~$ @* z3 i1 b
    Regular rings
    $ N/ e# u& a$ L+ aRegular semigroups
    " X) N9 M+ q! O& h0 k4 TRelation algebras
    ! O. E( A& s% N% L& C5 _0 }' uRelative Stone algebras) i5 n2 }- N2 r. ]1 a9 g$ _8 z
    Relativized relation algebras
    8 V) _% d+ D9 K) |' Q  s) gRepresentable cylindric algebras/ s: Z8 Z, H4 z5 S$ e
    Representable lattice-ordered groups2 {9 r1 t& a7 I( _  B7 |7 Z  M6 I
    Representable relation algebras
    & |- g  X8 g% T% iRepresentable residuated lattices
    9 T  p( `& J- c- `8 l* k* y- J+ B9 gResiduated idempotent semirings) b+ |7 u  ]% h% c% g( Q! A
    Residuated lattice-ordered semigroups8 C- m% w$ T  Q. c2 b/ L$ w; [/ n
    Residuated lattices
    ) w6 l. i) H) L0 K% ?0 xResiduated partially ordered monoids. h2 j/ p; E# J8 F7 b' h
    Residuated partially ordered semigroups: r3 f- y" F& V$ u3 S
    Rings
    & G& Z% s+ }! l6 f6 l/ u/ M. xRings with identity
    , i5 j5 k  r" a" I, @+ O- e0 ySchroeder categories( B( i( n. D3 x5 S! w2 D# X2 s
    Semiassociative relation algebras9 I; {4 K, Q& D/ s3 ^+ Y) M# R  ?
    Semidistributive lattices
    9 `& k0 z  p( dSemigroups, Finite semigroups
    0 e" i! L9 l6 f9 b( @0 O0 C+ g: zSemigroups with identity5 ^( W8 m; J' R; u1 a0 W$ }) u9 L
    Semigroups with zero, Finite semigroups with zero
    " z  {- j  l, Z# @0 o' S, G# iSemilattices, Finite semilattices
    3 M& n, _% v( Q+ ~+ F( DSemilattices with identity, Finite semilattices with identity: I. u: J1 `8 B* t
    Semilattices with zero; Z. ~, I; }' s- L+ F
    Semirings
    # j; s6 h) }5 O% q) a3 fSemirings with identity
    ! B& P& g7 u/ m- c/ H: [3 [3 L( T& m9 G+ j+ tSemirings with identity and zero/ ~1 s0 i3 o* t9 B: t# g9 A- c
    Semirings with zero
    ; I) N0 q; J1 B  sSequential algebras5 b  ]& C  u8 m0 L; @: R9 c
    Sets3 j) m% j+ D- o9 L, g
    Shells) U% w3 f0 J! `4 ~3 U7 ?
    Skew-fields8 `$ v; j3 T# S2 T
    Skew_lattices% B: J2 `4 Z- O
    Small categories
    . M) l/ S1 a; w8 V  \Sober T0-spaces
    ' n/ p( S1 D$ ]/ fSolvable groups: g* D3 ?+ D0 |( g. r, [9 {
    Sqrt-quasi-MV-algebras
    9 S; t# n5 X7 ]. [Stably compact spaces. r( K" W& [( `8 _
    Steiner quasigroups
    5 ~- a; }6 k/ N' O; I2 cStone algebras
    9 r. ]- k4 X! t+ O3 `Symmetric relations9 F: N: S% V, e5 \* H
    T0-spaces8 @7 E" A$ ^/ P5 w
    T1-spaces, L2 l# [$ C$ n
    T2-spaces4 Y. t  k0 @2 V. }  S7 o
    Tarski algebras
    * P2 ]: w. |. h' pTense algebras% F, m1 I2 u; }) E/ }1 g5 t
    Temporal algebras7 Y! m7 O; t  c8 X1 K
    Topological groups
    * m: E6 x0 u* `0 f  s! K+ tTopological spaces
    * Q4 y, p6 G$ |$ y" |/ YTopological vector spaces7 X/ X* f9 ~& ]2 [( T' S
    Torsion groups
    3 G# z2 w& o; }: y& p: ~: b- WTotally ordered abelian groups$ T1 }9 [' }- V
    Totally ordered groups; i( f7 o, _' |# p# F
    Totally ordered monoids2 Z+ m6 k7 Q9 v  s" i& W
    Transitive relations
    $ c3 z2 A) y+ |4 UTrees
    5 a2 z) O% a! KTournaments
    0 S7 `- Q6 G( x/ j$ ^) tUnary algebras
    1 L) o& L3 f. ~0 P: i1 T" GUnique factorization domains
    3 w9 R: l9 t7 a2 `' y$ w& QUnital rings
      J& k. W+ a% z# p3 s0 G0 X8 iVector spaces$ o& H2 T6 V' @  t# e
    Wajsberg algebras
    0 H1 l$ `7 e: L, UWajsberg hoops
      U" e* K% U% O, V  b  G  r) VWeakly associative lattices
    : E4 o( T6 R7 Z* G" i! n* M+ H9 s' E  |Weakly associative relation algebras
    $ w% S# |2 o; @- j- J1 oWeakly representable relation algebras) G2 {- H1 y' o0 @% w6 Y
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    阿贝尔群Abel群3 e2 B' K$ u: F( {' P
    阿贝尔格序群
      e/ r6 @; z7 u1 b2 L阿贝尔下令组
    # Z; F5 t# d! q3 ?阿贝尔p -群# f+ ]3 {3 |$ h+ N
    阿贝尔部分下令组' d7 H( c( f% |
    行动代数行动代数% @- C1 Y$ \' _
    行动晶格
    & C3 i' k: |! n7 P3 s代数晶格' ~, h5 E2 M) G# ]
    代数偏序代数偏序集& P4 O& m) q6 J- X- U
    代数半格
    2 @1 s& ~7 m- Y4 `3 x寓言的寓言(范畴论)# [, r. d3 C+ E; z+ x
    几乎分配格
    0 G: h4 z4 v5 @% q关联代数关联代数' D- P) t; ~  _: I0 V" i' B
    Banach空间的Banach空间, z1 v4 V1 r, m0 e
    乐队乐队(数学),有限频带: V1 f" v! s( n( l" x
    基本逻辑代数
    7 y, {% Y: |1 s0 dBCI -代数的BCI代数
    ! t# Q8 z. r" e4 f* qBCK -代数BCK代数
    6 f7 z+ n5 f9 g1 |BCK联接,半格4 L) ]3 E. q% k' i+ R2 L% F
    BCK晶格
    5 f4 l1 Q% u+ O* DBCK -满足的半格+ y4 b; b1 d' ^7 _' Z
    双线性代数
    8 t5 t/ z4 O+ ]# bBL -代数
    3 b& i, E6 K3 H! n: ~7 ^1 MBinars,有限的binars,与身份,身份和零与零,
    9 d  s9 U# t1 @( r/ C: \+ X; _9 L布尔代数布尔代数(结构)
    , I8 M$ l$ d  z" \与运营商布尔代数
    9 c3 J* J9 }  u5 r/ X' m* n( K布尔组
    7 I4 j; r3 ^% P6 M; u6 z) w' `布尔晶格
    / h3 J* Z0 q, B6 `8 Z/ k) ^  Z对关系代数的布尔模块
    5 C) f1 p% H8 c& \5 y2 r布尔半群7 g4 f2 V& K, ]$ A/ w% q
    布尔环( N( q) L3 u6 o4 O  o8 o% Q6 B
    布尔半群
    3 z' L: m$ y1 \+ c' [4 z0 ^布尔半格6 C6 S- y4 L( P/ M: G; V
    布尔空间( J/ E- S% \$ R# d
    有界分配格
    ) a3 Z) z+ x- b6 K! ?8 U% F, ?界晶格
    . e9 s, J2 I4 a$ E. d1 \界剩余格
    4 R8 ~1 T4 m. Z  z0 Z: s" QBrouwerian代数
    6 P) M8 R% \# O6 G/ o7 lBrouwerian半格" J/ f. K# H1 K2 ~& X
    C *-代数4 w1 ^0 j- Z. i+ |
    消可交换半群
    ( e. m% O, W* X: P5 {' C) [消可交换半群* o) M% N2 G- y2 ^, w
    可消半群- t9 Z5 s0 R* E$ Z, O5 N! {
    可消半群
    * e3 w  e* n, y8 e% ^4 k- \消residuated格
    $ v/ }, B2 W) J5 g# ~2 _% `分类
    & b2 U$ \) k- h. s3 ]" r; f) d/ R- D% c  z: g3 Q; L5 x0 W, |
    克利福德半群
    : Z3 T3 u( k5 J8 I# N3 S9 R. rClifford代数; H8 [# c# ]9 d$ T
    封闭代数
    7 G' Y! P1 a8 i& i2 X: @可交换BCK -代数+ Z5 G' j. P5 C, [! s$ t7 |
    交换binars,有限的可交换binars,与身份,零,身份和零- \+ f2 X) F) u: D3 f4 [; i; R) T
    可交换的组成下令半群,有限可交换积分下令半群) D; Z9 t2 D5 q* [( m
    交换逆半群
    ; o7 o  V* t. B! y# L) ^9 \交换点阵有序的半群
      w+ P8 k# P3 A) v3 \交换格序环
    % x6 f4 J- g5 Y2 z* x& Z交换格序半群
    8 l" F" M: V9 Z3 ^, G交换半群,有限可交换半群,零的有限可交换半群. z- {: N5 c/ T  v
    交换下令半群
    3 ?5 C( G5 G9 J交换下令戒指
    3 B+ Y3 I7 r* ?4 L% ^7 q/ _9 }有限交换交换序半群,序半群* X- Q9 ?9 |- j! ^" h- ?) o
    可交换部分有序的半群1 W+ V2 _6 F) p0 h
    可交换部分序半群
    # K- H, T* Q' N9 l0 \+ ?3 C# B交换正则环1 P- @( Y. z7 T  O1 u+ K4 Z
    交换剩余格序半群
    , j' q# b. f. d+ Y2 f! C: M交换residuated格
    3 u# S, U/ c* y$ @$ w" f: E可交换residuated偏序半群% p+ J3 Y: M# W& n$ Q8 G. Y; G
    可交换residuated偏序半群) ]6 [0 N/ d) x0 Y5 n9 W
    交换环- Z" \3 z5 [+ j( c) x7 b; Q
    与身份的交换环- Y' d# d- A; X( p6 T1 O- @, K
    交换半群,有限可交换半群,零1 w# O* F( V9 l1 d
    紧凑型拓扑空间8 C* U# _: x; w3 l$ G
    紧凑的零维的Hausdorff空间' p, |! s) p4 p5 M
    补充晶格  ~( |: C! e4 _6 V2 H
    有补分配格9 ~9 f, U* N" W3 k
    补充模块化晶格* _# g. E0 ~9 ], l5 r: S
    完整的分配格
    - [3 j+ H) F2 m4 c9 {完备格+ h- f8 ~5 z( F2 B) L
    完整的半格. ^4 g$ Z- w) S4 E( c
    完成部分订单0 `: J8 }  x. b6 z: u1 c
    完全正则豪斯多夫空间
    ' P$ L8 O5 g; \) B; N1 J; Z3 j完全正则半群/ G7 w) |0 ]% m7 B
    连续格# T9 p: ^# E. u
    连续偏序集
    2 I' C9 x: R( C/ T1 V4 ]; I柱形代数" _, x+ u3 z% o8 j- S4 v2 e
    德摩根代数* e# s# Z' l5 V4 ~8 `% f* @
    德摩半群
    : R/ o8 Z5 Q. P. B2 o戴德金类别
    ' m2 ^) |( f# M戴德金域& t- T* N' e- n. i6 u. |! @
    稠密线性订单
    # g; H* R# s* U# Z. D" B8 |: l3 a有向图代数
    + t) b1 L8 J% M! ?导演完成的部分订单
    ; M4 L) O8 d6 X* S导演部分订单! j7 S: Q. T4 t& F; k
    有向图
      W( b: p5 X# d" Z8 a7 m; TDirectoids
    # [/ C, t* k# F2 A7 c分配寓言, a  l& H2 v4 d5 N
    分配的双p -代数
    ! i7 Y! F5 f. n, ~1 v分配的双P -代数: a9 E" w5 `. J6 h+ T
    分配格扩展9 P( A1 n5 N) \2 Y1 _2 A
    分配格  Q' y( w3 Y8 Z1 p' B8 B" j% F7 B
    与运营商分配格" g8 k, k7 P5 Z5 r% X2 x
    分配格序半群8 o% V5 X) v9 z8 h
    分配p -代数6 x1 b( r2 G( s
    分配residuated格
    / \( P7 n4 y8 `5 ]& p2 k司代数
    5 J  w0 ]' X0 Z' `. |8 ~科环
    4 G0 ]+ P* {5 Y+ s$ H% L* Q% Q双Stone代数# d! p: R/ w8 u
    邓恩半群
    ) ~8 a- q+ t- M) _* i动态代数
    $ L. }2 T1 A$ j2 g9 n熵groupoids% H* p! H9 F, t1 G
    等价代数
    / D( }  l) J( d- ]2 l等价关系
      \: v, p. c: T欧几里德域
    8 V; K& m/ u3 l6 gF -环4 L9 M' q* B0 ?( C
    字段' Z0 M7 o& Q+ H1 X3 ~, G7 Y
    FL -代数3 G* O: M' h$ z$ v
    FLC -代数$ J7 y8 w% `. g5 `' r5 ?
    FLE -代数0 L3 o1 m3 @4 b7 @+ d
    飞到-代数
    1 k0 W! d( x' A( s/ m" P: [FLW -代数: T) F, ~1 n! J* u& ^& `9 |
    框架! B5 _2 r: S/ @
    功能戒指
    " a3 U& A4 F$ O8 S2 M+ ^G - 组
    : N" h% S) D- H2 q广义BL -代数
    2 _3 e, ]) A4 z8 W$ |2 ~* \( s0 q  }广义布尔代数$ e: v5 b/ |4 M% A5 s/ G* X
    广义的MV -代数
    6 G( h8 h9 b* Q' @3 N# @( LGoedel代数
    : q7 P# m: n/ r9 ^1 p; k. T9 k! D, A- v
    Groupoids- }( M% j6 G. ]- d9 D: ~# c. ]
    ) T" P6 t' X# q. c! |3 ?
    豪斯多夫空间
    7 z  ?$ W+ a( [. A9 kHeyting代数
    7 O) H. q5 c) [; \2 n. Z; A" [希尔伯特代数  j2 [) T3 z& A4 D5 P' ]
    Hilbert空间+ o1 ?9 r) `1 ?1 S5 V- F
    篮球
    ' A9 V/ Z/ z2 u# z3 A幂等半环8 u& K* ]7 l* Y( @+ O. ?
    幂等半环与身份" D$ a4 w0 O0 p% m; {1 `. p
    幂等半环的身份和零( C: b  t7 S/ |5 s: L! ?) V0 Y
    幂等半环与零0 k. d- L- I2 v6 P3 Y% c2 k' q
    蕴涵代数
    : R; n+ ]  [4 }+ J含蓄的格子
    6 \9 z* O9 Z& c- ~7 X! J" H积分域0 k& p2 m8 M5 T8 r0 V* \( \
    积分下令半群,有限积分下令半群* g( D, L' I2 {, L! v) ]
    积分关系代数
    2 N  l6 {8 _4 m  Q0 L. T集成剩余格
    * q' w4 y' ]9 S# V, j直觉线性逻辑代数0 M- _6 x0 {  m6 p! O3 c. k/ g
    逆半群6 J4 {* D; ?) e7 q+ F) D7 W3 K
    合的格子
    / Z  `$ s* [& Z; v7 O合的residuated格
    + F- d3 `% h9 Z! i加盟semidistributive格
    3 b# [' H( L7 Q+ W/ u; U加盟半格+ g3 k" {) t9 E* b+ h0 z* H' w
    约旦代数
    # U# _* G3 w- H2 R( H克莱尼代数
    ( c% t. C+ j6 C9 O' U克莱尼晶格
    1 R8 q+ p; S/ v2 ?) CLambek代数8 d! [4 M5 d1 N3 Y
    格序群
    / E( K, c$ y0 d( p7 p格子下令半群$ t1 l5 {% s5 _4 z1 P
    格序环8 _- O7 x( g) D
    格序半群
    # o3 N# f+ X9 X! t0 Z5 s5 w& k0 B- k  q
    左可消半群. ?8 H* f& k$ \  _
    李代数- }" n' A- t, B5 N! _4 {0 B/ u
    线性Heyting代数
    2 A. ^" U# V' I1 L% F线性逻辑代数
    6 L! b2 K) T( P5 G5 l. T线性订单
    5 I9 W: l* [4 o* A( L" |" z# D语言环境
    ; K. G5 c! h- t! K) k+ _) _2 r局部紧拓扑空间
    . E6 ~* l2 c# T2 a# {9 U循环; H- I- }9 r3 K# w, E! Y9 c
    n阶Lukasiewicz代数
    8 r! E/ [% E/ f5 O  }/ vM -组& P" ~9 E; J9 h0 \9 X/ z
    内侧groupoids, j; Y" [6 ?8 n. d  e. g4 Y8 m
    内侧quasigroups3 q- O7 g# Q- j, B; I6 A
    会见semidistributive格
    9 x6 f) L8 m" @- p1 B会见半格
    : @  J4 o) K$ a0 A. _9 s度量空间
    " w: P/ y- i4 ?3 V: O& M1 u模态代数3 `8 t+ j% E& W5 h: {
    模块化晶格
    ; Z7 u) L- i: W4 H0 D! e4 X模块化ortholattices, O) J9 E0 P% C7 ]  s. L
    环比一个模块
    6 h; r" c9 K9 N! l7 c+ a, B单子代数, t& d, A2 i6 m' L2 e' q8 K
    Monoidal t -模的逻辑代数
      S1 l; y; M2 M$ h! z  Q& A* H4 s; E幺半群,有限半群,零
    ; A% D1 C+ x& g  M1 OMoufang循环
      E) {4 G) X8 {% U2 PMoufang quasigroups, ^2 x+ R) d  T% ^) A1 Q
    乘添加剂的线性逻辑代数
    2 ~+ Y: g& R5 [$ p& H: [乘晶格$ A+ T5 a+ A/ G6 u- a9 `
    乘法半格
    ! i5 W- r* W  d7 M# l# G多重集
    2 K( m9 E5 N* O9 C( r5 H: K/ yMV -代数
    " G0 [6 d- |1 r& y9 s8 F# GNeardistributive晶格
    # ^7 T* j5 \2 L6 s7 _近环8 \/ O. q6 Q, ?0 P  ]) G( I' J9 w. X
    近环与身份) P4 \  x4 P2 o4 J6 d1 F; u; {
    近田
    ( f7 X: |+ l- k- u( ?幂零群
    1 L5 ^+ A/ ?% K& C. A非结合的关系代数
    9 ^! b# M; U: |$ j3 c  _. o非结合代数7 T. i$ a. ]% \+ l
    普通频段
    $ _# b9 T% m- @/ ^正常价值格序群; m' s" r/ e  W/ H
    赋范向量空间
    , \. R$ D6 L. m5 U! b奥康代数
    / T: S5 _( n$ W! O, y& [% k订购代数8 ], D) }, i2 n
    有序阿贝尔群* _3 d5 [5 X0 J
    有序领域
    2 Z% L" y5 ^: Z0 {; T6 c序群; A4 U) ?! i! t. }/ v* }7 Z% [) R
    有序半群
    & U( R, Z7 e. x; [+ Y与零有序的半群
    2 V! y! Z" K% C6 o! Z$ H- z8 P有序环4 S' F, e; J5 d2 \# }& f
    序半群,有限序半群,有限下令零半群! [7 U2 A8 M: l+ U5 Z  [
    有序半格,有限下令半格
    * M; U9 [* N! T$ x+ k3 g; K有序集
    % S2 Q% x: x9 [( F- Z5 q矿石域) s% U' g  H- m  }) f4 Z
    Ortholattices
    7 h9 w: X8 }" |) @正交模格/ x8 m# ^* R# y* c+ O' A, A
    p -群  N4 L+ D) {# l
    部分groupoids
    # n/ }6 t# T" W- ]! t1 h& |) R部分半群" r# J3 G/ `; t9 ~; I; {' I
    部分有序的群体; j! K2 r( V" g3 Q( l2 e
    部分下令半群  `& n3 \% ^5 r  u! ?1 }
    部分序半群/ D. D! N( E6 }$ P* n( X' v
    部分有序集
    4 x6 n" k% U5 \2 C1 k皮尔斯代数& o; Y! ^5 m) u+ c
    Pocrims7 i- ^. ?' u4 q5 C: n0 U
    指出residuated格  z4 K- C0 e5 r2 Y
    Polrims8 y- p  J1 Q; L9 [+ h  q0 B
    Polyadic代数
    # X. ^  A: e/ L5 U偏序集/ D7 c" p0 B3 D' g3 ]! G
    邮政代数
    / [) N5 Z) x$ I( o1 J+ pPreordered套
    6 m- Z; K/ G" d% c7 g' @普里斯特利空间
    % C) f& M, n$ `) I主理想域. {8 A0 w  C$ w$ ]
    进程代数: Q& y. L* q! o0 K" y
    伪基本逻辑代数
    7 ^* M4 V# _" S' V3 ]伪MTL -代数
    3 e4 ?* |" ~" P( a. i: ^伪MV -代数
    ! B% X, i2 ?. E5 ?Pseudocomplemented分配格
      T* [9 K2 u4 i, U2 B  p纯鉴别代数
    # ?5 }, k0 f* d- K1 qQuantales( x4 Q- T0 c" [/ [
    Quasigroups
    ! ~9 m5 b( H5 J6 }9 |; ^准蕴涵代数* g2 D- }% @6 @/ W. \6 J  F% c
    准MV -代数* h3 Q' j0 x/ X, L
    准有序集$ x1 e* _" l. u
    Quasitrivial groupoids
    0 @  U" b1 [6 A矩形条带
    : z+ I, U! f5 Y  e3 O1 B自反关系
    # w0 r# f2 c3 U: A2 v正则环
    5 R/ |4 s: E% b3 L正则半群* i, @+ O; c- b# P. O, e
    关系代数
    9 ~4 v. |% W% u/ i0 q. {0 D相对Stone代数% x* x5 ~% f  g# x$ J
    相对化的关系代数: ]; v3 ?9 Q$ B$ E+ X' {) W) z3 }
    表示的圆柱代数
    2 |2 U  {6 l- F9 ~表示的格序群体
    + o# I- _" `5 d. h! @7 {表示的关系代数) L1 q! m/ g, d: J) {
    表示的residuated格+ i9 ^8 }& d8 j! K% n' W: d8 |; ~
    Residuated幂等半环
    / f5 k3 [5 g! Q! ]  s6 @8 J剩余格序半群3 f. t1 Z; M8 w$ `" h* R9 g+ c
    剩余格
    & y6 L$ D  c7 N7 \. F% CResiduated部分有序的半群
    : ]+ m0 D0 x. Y7 i1 G! a: aResiduated部分序半群5 K  z# q. }2 ?' b2 P, d
    戒指$ ^4 k; r. L: T, ]* D; z
    戒指与身份
    ) E6 u* V1 r+ r$ b4 [) l施罗德类别
      H! `3 u: S) a7 s. d. [! ^, ~6 lSemiassociative关系代数8 q% Y3 B: x7 m$ s% M
    Semidistributive晶格7 }9 M2 b, n0 `
    半群,有限半群( M+ J7 F4 R5 k" t  i; @* b
    半群与身份
    / d$ N4 ^  E9 U1 A. k& g半群与零,有限半群与零
    : M1 Q7 ^( X8 K! o2 r2 C" I. y半格,有限半格
    * T, B* i% b7 m" p1 ~& \' [与身份,与身份的有限半格半格" ~3 ?' z9 T( h: o  p  q
    半格与零
    0 S; C- J- f1 B$ Z5 c半环$ u7 S7 A9 G/ G# B2 O* ~: \
    半环与身份# E- o% R, A3 p5 W7 N1 m
    半环与身份和零
    # Z# Z3 a# t: [' R! W2 Z+ b半环与零
    - d1 j7 f* {6 R; s$ ~' C连续代数/ |! r) O' d" r0 ^4 j6 r$ J2 Q

    , L$ U+ c$ s* L( A  J9 i$ _% m" G) `: u
    歪斜领域
    ' m. t" f: W. H. T8 D& f2 b, SSkew_lattices& a! ~4 k- H8 D( n$ D0 v
    小类/ l7 j% a# C( w
    清醒T0 -空间
    9 z( U4 g, b/ ~! `2 O. p% |& ~" h% @可解群; P* \: f3 s% k. V
    SQRT准MV -代数
    . O1 S  |$ t! f- J+ w9 T稳定紧凑的空间
    2 \' l$ r* G" }" O) @. x施泰纳quasigroups
    4 S' |  H7 X. r5 y% [; uStone代数. B" q8 k9 L! @1 |
    对称关系
    3 V8 M2 c0 s$ k, I; x" eT0 -空间' f9 v+ }. v  y! s8 H8 E7 J2 E
    T1 -空间  F8 ^5 O1 Z# h3 i# s& u
    T2 -空间
    % u8 p7 t9 Y9 r4 C9 z, Q塔斯基代数% Z, j. z* e- d0 P$ Q+ c2 X7 o
    紧张代数' M: N3 y& o% @) @
    时空代数- _9 l$ O; J) W: K/ R, |
    拓扑群. l/ Y; l; d+ _* ?
    拓扑空间3 G9 c- }' L+ h4 f
    拓扑向量空间* Z! [# d# h) n# j/ Z9 V/ L& a
    扭转组) ]- E; K6 N8 X: z( U+ P4 Q( W; W* H
    全序的阿贝尔群) j9 X! M% q. S# Y
    全序的群体4 [0 Z& l5 W* r
    完全下令半群; r5 u% s: T. @
    Transitive的关系/ _0 C& \8 H" y: l0 t5 C. T
    : z; W: H0 a) \& m
    锦标赛( m/ G9 ?4 `6 B* p
    一元代数0 s/ B! s/ R& G- Q  }- ]5 v
    唯一分解域' P; @# C! d0 e+ k: O5 T
    Unital环. q, _% h' C. g5 }! ^0 {9 w
    向量空间
    ! }9 e( R$ v0 I8 i: M* FWajsberg代数
    ; N5 i$ N8 G  X0 m  A! FWajsberg箍
    2 e2 |' l" B: M) w弱关联格6 o' M0 e- M2 h. d
    弱关联关系代数% \3 V+ _* T4 v5 k' o; p
    弱表示关系代数
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3289

    积分

    升级  42.97%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    qazwer168        

    0

    主题

    4

    听众

    53

    积分

    升级  50.53%

    该用户从未签到

    回复

    使用道具 举报

    ZONDA        

    0

    主题

    4

    听众

    3

    积分

    升级  60%

    该用户从未签到

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-7-28 01:51 , Processed in 0.509995 second(s), 78 queries .

    回顶部