QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3274|回复: 4
打印 上一主题 下一主题

311数学结构种Mathematical Structures

[复制链接]
字体大小: 正常 放大
lilianjie        

43

主题

4

听众

204

积分

升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    跳转到指定楼层
    1#
    发表于 2012-1-12 13:19 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    0 `7 b9 p8 V0 b+ _$ p% [; u

    ) ?* r6 `+ \" M7 {" X; s" K) IAbelian groups     Abelian group% e! R9 K& M0 c9 x; }9 n0 V/ ?: b
    Abelian lattice-ordered groups8 C  a4 u9 O. d; D% ]1 y- }" V
    Abelian ordered groups( Z8 e6 h  s1 I& n8 G
    Abelian p-groups
    ( ~% g' P2 {& e; [$ s0 }$ VAbelian partially ordered groups
    9 C; h, r# ~! F8 h. t& KAction algebras     Action algebra
    / \7 Q7 t& {! S& }  dAction lattices" e" x9 J' `- B$ j0 i( C
    Algebraic lattices
    / z) d; U! o1 X: X$ iAlgebraic posets     Algebraic poset
    % G6 @( O8 ?8 U5 iAlgebraic semilattices+ k7 s9 g& O1 Z; j6 y& S; t
    Allegories     Allegory (category theory)
    . |8 M. u* K7 T* o: @$ b. XAlmost distributive lattices4 L8 Y* W: P* x, N# D7 x! K
    Associative algebras     Associative algebra/ v: J! e9 [# G% a  v
    Banach spaces     Banach space1 p; w; [9 b+ q0 |8 W' Z- N! X" g
    Bands     Band (mathematics), Finite bands& B# a+ r% G  a
    Basic logic algebras4 x: Z' `: B5 n$ v0 h
    BCI-algebras     BCI algebra, b  ~+ X/ E: E: E9 Z4 j* ?
    BCK-algebras     BCK algebra' I' z6 ~$ c7 W* A5 g9 I4 ^9 W9 p
    BCK-join-semilattices5 P/ {. H, p$ v9 D3 r# d2 d
    BCK-lattices
    : R& [& x, l3 s; h" t! qBCK-meet-semilattices5 ~' q7 W- W5 c
    Bilinear algebras
    3 I. |: c7 g( x, O. k* J" NBL-algebras
    0 O# S$ R: W: d" C' P" OBinars, Finite binars, with identity, with zero, with identity and zero,
    5 l5 ^" p$ Z+ \& R) @2 b" D* zBoolean algebras     Boolean algebra (structure)/ s3 D3 o% U- L
    Boolean algebras with operators1 v: F! ?0 ]* C( o+ p5 P
    Boolean groups
    ; L1 ?) q' q7 g' d# |Boolean lattices% H4 v$ J% E. m# v- L, d* G6 S
    Boolean modules over a relation algebra( i: o, H4 k2 _8 R9 ~' o: j
    Boolean monoids( G/ N) S5 O; c$ H& {
    Boolean rings- i+ D% y$ @$ ^- G! X
    Boolean semigroups
    : ?2 c; h$ Q* \; U, w( UBoolean semilattices
    & E# e' M! K: [; M7 Z. y0 IBoolean spaces
    % v! {* [+ m( i$ rBounded distributive lattices
    , \% N7 I* X! R7 a9 _Bounded lattices
    # a* W/ a3 [7 A2 X0 ]" }1 ?Bounded residuated lattices
    - L5 {4 }: _0 [. P% j. g% aBrouwerian algebras
    , ~4 I( j2 q9 S5 y# q. wBrouwerian semilattices7 U3 T9 _$ _. w
    C*-algebras+ X" H$ e) ?+ x$ _
    Cancellative commutative monoids
    5 u- t, v( Z5 H! S: r, Y1 B% \Cancellative commutative semigroups
    * s9 U: P8 L: Q" sCancellative monoids
    1 o4 l- I1 s# ^; qCancellative semigroups
    1 R  m& \, G% Z6 q1 `" I) SCancellative residuated lattices% M( t- Y6 e6 s3 F6 x; f2 r6 R5 O7 t  o
    Categories
    5 n( f5 ~" ?, Y! }Chains
    : i4 N3 ^5 Y/ x0 w" iClifford semigroups6 A0 H, i/ ~! x9 b8 E- i. l
    Clifford algebras4 ?9 G* t! p. Q4 o/ @/ [( b- N
    Closure algebras& p% d8 }; O8 ~7 _) ~
    Commutative BCK-algebras$ R0 e) p' }/ A, L% e
    Commutative binars, Finite commutative binars, with identity, with zero, with identity and zero - R5 X1 F; x1 V2 V2 i# _0 a
    commutative integral ordered monoids, finite commutative integral ordered monoids
    * v) h$ w6 i6 @6 ~! _Commutative inverse semigroups
    - d$ _( E$ n# S3 V, ~3 _7 @Commutative lattice-ordered monoids. E8 ?2 K* ?3 k$ T9 |8 b8 W  N0 S
    Commutative lattice-ordered rings9 {* z- N* N+ L5 ~
    Commutative lattice-ordered semigroups0 Z( z6 z. z/ z/ c) W5 j0 [
    Commutative monoids, Finite commutative monoids, Finite commutative monoids with zero/ k) p6 L: Q' [% p" P3 ^3 s3 u/ [
    Commutative ordered monoids
    8 b: o3 h6 d; o" r* V5 d# I( gCommutative ordered rings
    9 I8 U# j; {/ f* b; C) h( TCommutative ordered semigroups, Finite commutative ordered semigroups* r6 {6 v& m6 V3 y; C
    Commutative partially ordered monoids3 }7 g, {0 e" a  q2 S6 z: N4 h
    Commutative partially ordered semigroups
    9 z0 F& x/ A  j* O7 J2 VCommutative regular rings
    ' |) F0 T: P) f. C: w5 `Commutative residuated lattice-ordered semigroups2 M2 t8 j* E5 _( ]! i  b, ~) D
    Commutative residuated lattices
    ; ?! f0 k. B  ^' \2 KCommutative residuated partially ordered monoids
    # W: {) Q* c  C, E; ZCommutative residuated partially ordered semigroups# g9 l& Z/ ^- e. y* s
    Commutative rings9 p3 N% x, l( j6 o  u! [' t5 _: G: o5 X
    Commutative rings with identity0 t" v1 J; q) [
    Commutative semigroups, Finite commutative semigroups, with zero" R' R& c8 M: F) N& ~
    Compact topological spaces
    4 J0 E/ I7 [: b4 J3 m0 T' d; BCompact zero-dimensional Hausdorff spaces% h/ v0 e3 p' f9 U  G5 }
    Complemented lattices
    . S3 J; Z) g4 d# p9 o$ d- h, WComplemented distributive lattices, n) [7 p( v' [
    Complemented modular lattices
    # `6 T$ k. r+ |2 NComplete distributive lattices
    1 J# b4 b9 A/ s: M  |: T2 M" l  a+ yComplete lattices! a% Z, |# }; p0 k2 ?1 w" U) q
    Complete semilattices
    . |8 D( J; v6 ]- p) A) M1 kComplete partial orders5 |. O8 d: M3 Z/ |( m7 z
    Completely regular Hausdorff spaces
    % _! {" C# w5 S; r# Y. ~, P* I. ]Completely regular semigroups0 C0 k  v6 r5 q; U- I
    Continuous lattices$ e$ }, V/ W; G4 q7 b
    Continuous posets) D2 F6 D% A4 N' L1 t5 `6 m
    Cylindric algebras
      y( n4 J8 o3 |. r/ h  @3 uDe Morgan algebras7 o5 y- @8 m; ~0 E2 E( @
    De Morgan monoids' j* B8 y. p1 X: v4 U# ^
    Dedekind categories
    - V; k- s9 K- t6 J1 DDedekind domains
      H8 e  c- s- @7 x; @Dense linear orders: n% B/ Z- C+ a/ ~1 ~- D% @" n
    Digraph algebras
    5 e, `3 |4 U/ ~* E" b$ T; l8 t+ YDirected complete partial orders  M# K3 \( G: o' k! t( M4 L7 s, ?
    Directed partial orders& Y, S3 H7 B8 Y) S
    Directed graphs* h+ q$ w% n' @; V- t
    Directoids
    + i; s- x8 L2 z8 S. _Distributive allegories( c3 B- ^& D2 q( ~: b6 B
    Distributive double p-algebras
    3 Z1 K- v7 _; W) O3 D  cDistributive dual p-algebras
    4 t) k2 ]: E% h! _: h" D5 @! VDistributive lattice expansions
    ' @& }. w2 a8 n5 @Distributive lattices
    9 i& ], W, ?" p/ h( ]Distributive lattices with operators
    5 ~! i; `- a1 e' X6 X) M# n" MDistributive lattice ordered semigroups9 B9 ?2 [# Q7 w' I. l
    Distributive p-algebras  }, n+ g" H6 f
    Distributive residuated lattices. e; S( d+ ]. H& v* C
    Division algebras3 H/ n! a  l5 m/ M
    Division rings
    $ z  X- ~* I& }3 |. WDouble Stone algebras
    8 Y/ u' E4 Q/ E! }8 _# n3 A/ ~Dunn monoids
    9 q4 H( ]6 ^7 m% X8 u0 jDynamic algebras
    5 I: o5 R7 ~8 SEntropic groupoids- s4 {" G0 I  b1 I( R
    Equivalence algebras
    # e0 L; m( n; d- r/ q/ n, A5 \Equivalence relations
    " I9 N  c! t) _6 ~# D( i, A& JEuclidean domains
    9 g0 ]1 i; m% z, q  O0 A# L! Wf-rings1 S2 W# j% I2 ~, r$ J( P
    Fields
    ' A! D, T6 ~* W; K3 C" C6 J" vFL-algebras
    . R# p$ n8 B. e$ b/ S9 q2 i# JFLc-algebras
    . T. l; z; A" ^2 r4 gFLe-algebras
    " C) I4 _2 v. K1 {$ l: u+ v, D6 SFLew-algebras
    7 A8 c6 s+ r  |: ~5 Y" k! ~/ S2 kFLw-algebras5 Y# m" m7 s; A7 s
    Frames( A4 g! G  G, f1 P
    Function rings. ?0 H% l& y( o* ^$ M; w5 C8 Z
    G-sets" N2 C( F7 e& o
    Generalized BL-algebras  I; Q9 z4 J  o+ C; w  E
    Generalized Boolean algebras
    : D9 ?' E) c5 s9 iGeneralized MV-algebras
    ; f1 K- s4 X0 u  s0 UGoedel algebras8 I- J% Q3 {* k4 p2 U2 P/ z
    Graphs
    9 @( F2 n% T" ~Groupoids
    ; ]) q3 M  Z) B; lGroups
    / i) P6 i4 u. J3 vHausdorff spaces8 {- E( T, {5 e( h! G
    Heyting algebras
    % `: f! c% O* vHilbert algebras* V# |3 i; L) U8 ?" G0 G* X
    Hilbert spaces
    . r4 t# w4 K! z' Q# KHoops5 v9 E0 z# H3 K  s
    Idempotent semirings
    6 g( r7 O- U: p1 q" Y0 ^Idempotent semirings with identity
    . p  B( x$ m9 ?2 g6 P- yIdempotent semirings with identity and zero0 n% r- j: ]. V- _9 I/ V0 ~
    Idempotent semirings with zero4 P, E* y5 F+ C5 b( X! |
    Implication algebras
    ) F9 U- J3 L' B* q( jImplicative lattices
    3 k: g0 n/ R8 h! q8 b  SIntegral domains
    0 U+ I0 ]0 Y! JIntegral ordered monoids, finite integral ordered monoids3 L% K0 s' z9 M# r( y
    Integral relation algebras
    - I% l. Q3 R, v+ n3 Y1 yIntegral residuated lattices2 @; s6 G: d  o
    Intuitionistic linear logic algebras: }; K: W1 c2 v' ~, n
    Inverse semigroups
    2 C# U+ V. p+ R- RInvolutive lattices. M8 u, l8 R" A. W
    Involutive residuated lattices
    * D  z; x  L3 u- k  bJoin-semidistributive lattices
    ! @4 A/ E: b# X2 w' Z2 D/ a6 LJoin-semilattices! y2 B$ e" J) v2 A, j
    Jordan algebras
    ' ]1 [0 u! V/ n: U# c* q! t' `Kleene algebras; T0 K4 B- c7 M0 q# Z& c
    Kleene lattices2 g: g( W6 b( [* k
    Lambek algebras
    6 @  p* y( X8 y% A7 R8 O1 HLattice-ordered groups3 f5 Q- _2 o- Q% N8 j, F
    Lattice-ordered monoids
    1 x: @5 m" f8 @+ ~Lattice-ordered rings! L4 [* W! E* ^8 ]
    Lattice-ordered semigroups
    ' Q& G( e- b; K3 U9 T( Z2 s2 A) Y7 pLattices+ u6 [) [7 U" P' D- @% \
    Left cancellative semigroups
    5 B" V, W4 P) Z9 Y8 w6 \$ _Lie algebras4 y* H& K# R$ B
    Linear Heyting algebras
    / s& ~6 p" L# t: `9 HLinear logic algebras9 y' C  a' M1 W. g/ G/ r; Q
    Linear orders
    8 O' f; ]$ q5 V, ~4 t# M! ?( W2 aLocales
    ; ]4 y7 y, f5 T" j  wLocally compact topological spaces
    4 ^7 B3 ]( [. T& ?8 Q1 _: c% M, PLoops8 ?9 g) m3 A( G3 ]- I& E
    Lukasiewicz algebras of order n
    1 L3 }' L- n6 k/ EM-sets7 s. A, G  z$ w2 {
    Medial groupoids
    % u  U  }2 C$ nMedial quasigroups- T* S$ S# P" J5 i: c7 k( z
    Meet-semidistributive lattices! m  C$ n4 m+ k1 l9 q
    Meet-semilattices( ?7 p, B8 P" x' [
    Metric spaces3 J2 Y8 X/ Y3 ]' S5 V9 y; L
    Modal algebras( l9 `( ^' g( M' ?; t0 D1 P' M# N
    Modular lattices
    2 d  r- s" X& l: UModular ortholattices8 @/ w% e# ]' F  V: T% G9 _
    Modules over a ring
    8 C# a1 c2 J6 |; D* a$ v0 FMonadic algebras
    + @2 V7 c. r5 l0 u% }Monoidal t-norm logic algebras1 z4 p$ N3 Y8 B* U7 B8 t9 K
    Monoids, Finite monoids, with zero
    3 T% ]' K2 i5 k2 u9 T" L7 dMoufang loops9 w) }; o1 k: }! Q1 R6 S
    Moufang quasigroups
    + Q- U, m2 S+ k3 hMultiplicative additive linear logic algebras6 }, M( K! J: f) T0 y$ e
    Multiplicative lattices
    1 s, G+ _/ A( m7 L$ x5 y/ l7 wMultiplicative semilattices$ W! c- K- T4 ?6 O; R- K; u
    Multisets
    ! k: O+ v' u" C& LMV-algebras
    : z! R' H6 v( x! y% Z9 hNeardistributive lattices
    7 U  O1 f  d7 f$ kNear-rings
    2 @4 w. f0 m7 Z* hNear-rings with identity* r2 d& V' o9 g1 Q
    Near-fields
    1 N* y1 n+ K, H2 I4 LNilpotent groups+ d$ N8 c' Y) _% c  }4 ]
    Nonassociative relation algebras% J& W* ^3 X+ B8 z; E8 l
    Nonassociative algebras
    ( I+ [% R) |; l! vNormal bands
    ) z8 r  `& n4 G- n0 Y+ x$ |Normal valued lattice-ordered groups
    - V& e' f# q7 B% C# A! @Normed vector spaces
    + {1 c1 {1 j8 i; C, [- g, sOckham algebras
    : e. e, M- f0 `( j6 t' ROrder algebras/ ^4 _1 A& I  a1 z# ]9 t4 M
    Ordered abelian groups
      O+ t/ d/ V7 z$ d( E1 {Ordered fields( {. k  _' d- V) c/ P
    Ordered groups
    % m7 r5 ]7 s2 O0 J$ _1 F9 O/ eOrdered monoids
    ( c/ J, L4 Q7 P& [; ?: a* Q# ROrdered monoids with zero' H% \6 e% K% {2 h) Q- ~/ P+ V
    Ordered rings$ x/ D5 j* ^' z8 H2 t/ o1 J
    Ordered semigroups, Finite ordered semigroups, Finite ordered semigroups with zero
    + X, r# }6 z/ H1 u/ WOrdered semilattices, Finite ordered semilattices
    1 I8 X" r/ U- J2 g5 T+ c5 u; o3 lOrdered sets
    - a. h! y) H5 D2 LOre domains5 E; T# {3 `: s+ c; a8 }/ d1 R
    Ortholattices
    0 ^) H3 r) x0 |' |0 {Orthomodular lattices0 j8 D& u$ R& ]4 Y" o
    p-groups& i! O8 S8 c9 f! L
    Partial groupoids( l' [( V6 I) W6 ?) p
    Partial semigroups% J( f6 G# x9 j  X. y+ O
    Partially ordered groups
    & ?- p2 Y( }+ K, mPartially ordered monoids
    4 e: a- f& Z( tPartially ordered semigroups/ s& X3 S9 W$ p+ J: V
    Partially ordered sets( ^8 h" V- T% T: M/ u5 Y( V6 E0 |
    Peirce algebras4 V- a. C; c4 ?) T' ~" x
    Pocrims
    * m) g% M, t8 [& _1 {" @7 ^Pointed residuated lattices& p+ H% l. z; k
    Polrims8 i) @  T! j& x6 F7 Y
    Polyadic algebras
    . j. r- N) Q) L/ U' m& d5 E+ @Posets) `3 q  V1 `  ]1 l# O+ A' W" ?
    Post algebras3 m. S+ x; J0 f; V6 R( S2 d
    Preordered sets
    % s% k2 i1 L' x/ x1 C5 zPriestley spaces
    # m3 A: [. F: T- D2 _) ^/ x+ jPrincipal Ideal Domains3 W' p* z5 G) O  M' @/ {
    Process algebras
    8 ^( d) y. e& Z/ F' n) `% d9 FPseudo basic logic algebras  W( M! V+ }1 L3 N/ L8 _, _3 d( W- T
    Pseudo MTL-algebras) w6 Q- y1 L- t, B0 k0 n
    Pseudo MV-algebras. F- _# N( c' p1 I
    Pseudocomplemented distributive lattices* y9 s$ B1 f- T5 V2 [
    Pure discriminator algebras
    % b; A7 |) R& l0 u. FQuantales/ G! A( }' Q4 P, l# n( r1 z
    Quasigroups5 D: @6 |; N1 K- K3 @& \/ a
    Quasi-implication algebras
    ) X5 ~2 V0 P  Z- [) N* w# d2 W2 B* wQuasi-MV-algebra  _& S. q+ c: ~- y, L* \( V3 d) I
    Quasi-ordered sets
    6 @" `, C! r- \* f# n4 CQuasitrivial groupoids
    3 m" V* o% j# p2 |' ?/ uRectangular bands+ k$ X7 b7 R. T5 W  H
    Reflexive relations
    - f) A5 k- h# n3 W, O$ BRegular rings
    + X7 P, ^$ v  L* f- sRegular semigroups2 B, X6 c/ r# @3 J
    Relation algebras1 ~; w: j6 L" c- W  i- G2 B
    Relative Stone algebras
    . S( S4 N$ s# |* ?, i3 s* ?) k! DRelativized relation algebras
    2 D& {9 s. R  T! A. lRepresentable cylindric algebras
    " O$ y4 X; U. @4 rRepresentable lattice-ordered groups  G9 j7 }2 b- }
    Representable relation algebras
    / Z6 d4 b2 ?- s& m# WRepresentable residuated lattices6 h! v1 b) T1 [5 H$ [' l
    Residuated idempotent semirings; N7 J/ C. I  s2 r
    Residuated lattice-ordered semigroups7 c) E3 F) S4 ?( b- k. T) @
    Residuated lattices* e3 ~" Z) z5 V, c% [0 ~$ Z
    Residuated partially ordered monoids3 m' L7 L: M' U
    Residuated partially ordered semigroups- f0 d% r3 n( y" G
    Rings; V+ Y; M9 {4 ~: w5 Y( H% a
    Rings with identity! X& e) U$ [6 X2 }
    Schroeder categories
    ( |0 T  {% [. l! E8 T% @Semiassociative relation algebras5 s% F) t- x' v4 l
    Semidistributive lattices! @4 [7 M* ?( ?4 D4 S
    Semigroups, Finite semigroups
    . Y  y+ R0 R- q- ]! ?4 _Semigroups with identity3 r+ {- e0 s' k& T4 m; W% [9 J3 t
    Semigroups with zero, Finite semigroups with zero
    / H* \- t$ d% j2 ^# d. {Semilattices, Finite semilattices
    , l- D" v9 M& ~3 fSemilattices with identity, Finite semilattices with identity
    4 e  v8 B5 z; h1 i# d7 x' SSemilattices with zero
    ; [1 F+ f1 Q/ ~8 @1 PSemirings
    9 s' V, T& f& zSemirings with identity
    3 u5 X& d8 p& F# r; q; @Semirings with identity and zero
    0 s; \5 ?( z$ g3 |) G' o  xSemirings with zero
    5 ?* K4 l7 X. m  T* D- LSequential algebras8 i& ~2 a. X" z3 u: I# f; K9 W
    Sets, F- D% H8 [) g, k) K% a& h7 @
    Shells7 |- X$ `' x" \2 M" e# e( V/ C
    Skew-fields: F% Y9 e+ a: M  z& h
    Skew_lattices
    # `3 Q" |5 G  ~/ n5 s- r9 a. jSmall categories
    / i+ w+ \: J8 v1 O& SSober T0-spaces( D* {2 ~: S9 |# q' n* U
    Solvable groups& a, U" U! m" O8 Q7 P3 z
    Sqrt-quasi-MV-algebras: f" c! S3 o- [" x6 y* F+ S5 M4 R
    Stably compact spaces/ i5 K0 X, X$ B2 d" Z
    Steiner quasigroups4 I8 w! K1 N/ \1 E
    Stone algebras( y: X6 n; f* P2 f
    Symmetric relations- }/ n2 Y4 L( k; o
    T0-spaces
    6 J+ X: h7 k) o% T, _# {; PT1-spaces3 T* V4 ^8 f3 g+ v. f! d
    T2-spaces/ ]* {/ i( T$ z  y/ K
    Tarski algebras
    ) Y: o! ~: b, l/ i, Z& aTense algebras. x: E4 g3 u5 |1 u$ h2 I
    Temporal algebras
    ) n3 q! P/ q, K" b4 [Topological groups
    % ~! a* H7 l" D+ k4 C4 ^3 q; X8 m( `Topological spaces& V5 s; D2 t- X! P' h
    Topological vector spaces
    5 [  `$ n( ?! zTorsion groups
    : l" T( R  x9 s% S- lTotally ordered abelian groups( Z3 q: |) k$ g! J
    Totally ordered groups; b- ]  n0 f- f
    Totally ordered monoids9 A! |2 G- N9 N. q4 X0 q! u
    Transitive relations, w" R  a6 k' q( i, u1 E% m9 u
    Trees; [, o, p: ?# q5 x2 F! y+ R2 R
    Tournaments+ T' V" ]4 s, \2 r
    Unary algebras! s! }! y1 Y  U- f3 A
    Unique factorization domains
    2 _. ~: x. g2 A  x8 t. b% gUnital rings4 f0 T6 }0 C' x/ f* [
    Vector spaces: ~. G4 L# Z9 Z
    Wajsberg algebras4 K0 z  K7 l4 B* P& r8 q* S
    Wajsberg hoops
    , N. c8 q7 k& S6 P' ZWeakly associative lattices
    * P: B- `5 i" M* A3 p: dWeakly associative relation algebras
    ) J6 c; w9 R/ T# e$ d! r0 KWeakly representable relation algebras& T9 g; I' V2 b6 m% v6 ]9 M
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    lilianjie        

    43

    主题

    4

    听众

    204

    积分

    升级  52%

  • TA的每日心情
    开心
    2012-1-13 11:05
  • 签到天数: 15 天

    [LV.4]偶尔看看III

    阿贝尔群Abel群
    4 l' K6 A3 o1 h0 E8 i阿贝尔格序群
    5 B# \, |$ N; p; i8 E# _; H' d9 H- Z阿贝尔下令组
    : Q, q* X" t' U阿贝尔p -群- ~' _$ J! M9 I8 h, w" W6 \1 p
    阿贝尔部分下令组& h# q% N! A& ]! |9 S& F8 V% E
    行动代数行动代数$ C% d: e( G: j% }
    行动晶格3 b! _' I7 z' [6 I" @4 V
    代数晶格
    0 l. z! q: i( h代数偏序代数偏序集
    " J2 m1 N2 s- T: f, J代数半格
    . {9 k4 S- @5 g4 E寓言的寓言(范畴论)
    $ U* ^$ h# f0 ~. D3 A% X6 @+ {4 l几乎分配格
    7 R6 Q" t3 B7 Z; t3 s, h& R' \关联代数关联代数
    / n. A% |% `1 b1 L1 xBanach空间的Banach空间
    ! h8 h) K8 l0 n4 V$ n( z! Q乐队乐队(数学),有限频带
    # t/ }& {* p4 Q9 U: [, [7 y+ h基本逻辑代数) \% d$ m! D2 a. b- {. |$ J& R
    BCI -代数的BCI代数3 l* d% ^, N% D; H/ F- d: C
    BCK -代数BCK代数
    " u, t* y9 V. x0 Z  q  {BCK联接,半格
    0 j5 r% @5 @" ^$ Q% d- UBCK晶格
    5 y8 _. U8 G5 z; |BCK -满足的半格
    1 U  V1 l! S7 `4 P7 g( q9 L双线性代数
    9 F# P" J! m+ Z8 R" k6 GBL -代数% n% p3 O! V! o" R) }' c; L
    Binars,有限的binars,与身份,身份和零与零,
    ( P% N6 ?" s1 V# I7 o布尔代数布尔代数(结构)
    3 b! c; m  B7 M9 j& E6 _1 r# x# y/ H与运营商布尔代数6 c! O* \& L$ ^5 ?6 F
    布尔组$ W: T5 Q% Y5 Z' `9 q
    布尔晶格
    2 Y* {) u' u. I5 g对关系代数的布尔模块" F& d+ R) K% v  P+ l4 x( z9 Q1 E
    布尔半群9 Y" [( q. r& ^" v: X
    布尔环& @3 }2 T% U; u5 J& x8 u7 [
    布尔半群
    " j6 B2 j0 i* _9 _7 u  t布尔半格/ a, F6 S6 M8 }% r" D9 I4 `
    布尔空间
    * T/ l. [* P, M( h7 |有界分配格
    5 d( F: t& b% x0 {* N界晶格
    ' M9 O3 T2 t+ g5 m8 f0 m; h界剩余格8 y# z+ o; Y; G9 v
    Brouwerian代数- f8 v. U' r: l1 l
    Brouwerian半格
    & u3 T" Z/ A6 B( j" v: b, TC *-代数. V. y1 u" U) l4 V! k2 w
    消可交换半群
    ; I1 U+ C6 M/ K1 d消可交换半群7 p0 M1 s, s$ E  @+ K7 i
    可消半群# V, W. E$ E- y# ], e
    可消半群
    * g( E) N) ?# W2 H( P  U' G消residuated格+ Y& \% B/ B3 n" b
    分类
    1 a: F; [0 }4 H! W- H3 m
    & m4 ?) `: P7 d/ x克利福德半群
    # I7 t, n1 s5 IClifford代数
    3 a& B! D7 \8 o- ~封闭代数4 v1 M7 Z- E+ C) B, c
    可交换BCK -代数
      ?+ i) w- E2 a+ `% K交换binars,有限的可交换binars,与身份,零,身份和零& f# ?0 P. n, G0 i7 O4 M# b
    可交换的组成下令半群,有限可交换积分下令半群, T  e% v0 T; l5 w) s5 r
    交换逆半群5 ^, {" v) W. R* n3 H1 C
    交换点阵有序的半群
    2 P9 _( E6 V! ~( Z交换格序环  G  M, W6 K  v: F
    交换格序半群2 Z% {4 L$ \, F* b
    交换半群,有限可交换半群,零的有限可交换半群
    9 A+ h1 J( t5 O  P8 {) S. P交换下令半群
    2 l9 x4 P6 _) K# B! p5 p7 r8 ]; F. E交换下令戒指7 b! r$ }8 M/ Z! S% C  y
    有限交换交换序半群,序半群
    ; p0 J2 F; x" w# B1 j) d4 A2 t6 m% M可交换部分有序的半群
    9 I) ^: e: @! `8 b9 b: V0 }可交换部分序半群
    8 ?6 }2 \: l5 t% }交换正则环/ K  @9 T/ {: M6 _! \" u/ h
    交换剩余格序半群) G( X3 L7 E* a" n- K% F+ @
    交换residuated格9 d! e* {! D& S7 C. T% \2 H( n6 B
    可交换residuated偏序半群% g4 b& ?. h# h: U' L  q7 Y
    可交换residuated偏序半群
    # |6 u5 F9 X! @+ H; ?交换环
    , o$ D9 I9 }; `" n与身份的交换环& |0 p% |  l+ C" p' V
    交换半群,有限可交换半群,零; ~! S4 c' M! {7 I
    紧凑型拓扑空间
    ! J0 ]0 @8 r/ g9 E! i紧凑的零维的Hausdorff空间
    ( f. q5 Z/ ]6 \& O补充晶格
    ! b$ b' a6 D/ n6 n4 o$ p) M& e- }+ i有补分配格
    1 t& J; t+ C3 v& C- H% j& S补充模块化晶格* @. E6 g8 x* M
    完整的分配格0 W0 \- t, ?: B) c6 z# @* g, o$ g  U
    完备格+ D7 |6 H* ?; Y
    完整的半格
    ! x; h0 K: v# o' W完成部分订单1 T* ~! W) E6 Q2 _
    完全正则豪斯多夫空间
    / N* G. ?" Q1 t/ f- C: V9 ]( ?完全正则半群
    1 G2 i( e& _6 w6 s" h  w连续格
    $ n% `9 t& S6 m, w4 c连续偏序集. J1 p7 c& _/ `* c2 a6 E$ R. R
    柱形代数# g2 `1 y7 V6 ~2 G4 c
    德摩根代数
    4 o6 g6 G* D- q9 i2 t德摩半群
    $ p% T4 k; [& V# R5 t戴德金类别+ F8 {0 |1 `+ A5 b( s
    戴德金域  g+ D/ t) ]# Z
    稠密线性订单5 `" }$ S  I1 w4 J# Q5 W
    有向图代数: Z) w8 I& E+ @1 Z
    导演完成的部分订单
    ' w. L* ^  Z7 r2 `) j! d% B导演部分订单
    8 @% d$ [1 p9 i' e* g3 T有向图5 y5 Z" y. R" J7 w% e. l
    Directoids" b4 _# P0 D% C% [* v0 g
    分配寓言
    6 [0 B3 @+ Z& P% V+ r5 K# X分配的双p -代数$ M9 C6 y* j# ^: e; Y1 U; r1 h* e* P( l4 V
    分配的双P -代数) P; J9 q+ `4 z: |
    分配格扩展0 ]; {6 n7 {: [$ K! A+ B
    分配格
    * c$ m4 K: d7 x" K& Z1 l, _+ N与运营商分配格
    : H( A* d% `/ q  z/ g" M分配格序半群
    5 c2 P7 G2 q3 U( p& Y分配p -代数. g) j7 }  M( Q1 m$ ]6 _1 K" m# H8 G3 X( n
    分配residuated格/ e4 l$ F4 t3 `7 w- `! `
    司代数
    ( ?1 j8 N0 C" q, N' q科环
      y! J0 D8 D; J/ j+ J双Stone代数
    ; G. H! a# ^1 X邓恩半群8 O" \! G2 h# X4 P9 r0 k$ V. T
    动态代数0 p& q( K4 d+ ^4 V& p, Y2 q2 k
    熵groupoids
    ' _5 r+ z  Z- `等价代数( P0 O* ?8 n6 S( B
    等价关系, V$ E# B$ b8 l$ @$ _$ b0 }
    欧几里德域
    1 Z; r* X) P" qF -环
    ) B$ Z- e. k' J/ g8 t字段- ~- ^: B/ {' m" P
    FL -代数! u9 b1 ^" \1 H( ]
    FLC -代数: P( W/ }8 F: e6 T
    FLE -代数- k) e, G5 z- A* p; u3 s
    飞到-代数3 @  u7 h7 ?2 \; j1 M- H* F
    FLW -代数7 J, \; b$ j  l& T
    框架
    . e8 E* C) ^8 c+ Y: C5 [功能戒指3 }# f0 D2 Y& M- o: i! K; Q
    G - 组+ b. t  @% ]( @% T) x# {6 G
    广义BL -代数
    % v; x8 c# u; ?% L3 W广义布尔代数5 u+ `+ I( H, a9 Z! p& d
    广义的MV -代数
    3 Z  `' V/ ~- f5 q0 p" y" w9 TGoedel代数  W2 f: a: k! f
    . k" Q) \3 a3 `* Y
    Groupoids
    : f7 [: D; |' L& y8 X% |4 b2 \) Q  u& m$ |) X
    豪斯多夫空间) g2 m) Y! l. ?$ }8 U/ ?
    Heyting代数
      H; l, @- O2 T1 o希尔伯特代数
    % J! J# c% G, K( m6 x3 B& m* L2 RHilbert空间1 y3 Z+ I' c- i9 T$ p
    篮球
    : w: Z# i8 D6 w& Q9 m9 x$ A% ~6 H幂等半环* W1 H% K) B7 I) r- ^# S- G
    幂等半环与身份5 A6 @5 k0 [+ A" a
    幂等半环的身份和零
    - ?9 U# Q1 R% {/ f/ R: E/ r幂等半环与零  R: l) t: ~$ I5 l% J) m
    蕴涵代数
    $ I  z9 H# Y4 M/ _' n5 B含蓄的格子. B: W( v& G. v: ]. A" d
    积分域
    ( V4 B  K# a1 U$ |: N积分下令半群,有限积分下令半群2 }$ E+ N9 G2 n! i6 L% w
    积分关系代数
    $ f8 l6 X, t: ~0 I# M( n8 a集成剩余格9 o* I6 D* j( n
    直觉线性逻辑代数
    . x1 \+ H' R# x# y7 K8 G, V逆半群; H% z, w; g* r2 ~
    合的格子
      G4 \/ o& u7 x合的residuated格
    6 b- }, U6 C4 T加盟semidistributive格1 R8 E: R& s8 e- h8 _+ v. U
    加盟半格* z  p: }/ G* B; p+ ?
    约旦代数5 l8 a6 K$ e2 G) Q* T
    克莱尼代数& \, G" e( Q, q  w& ]1 a
    克莱尼晶格8 I) \8 y, {) z% l8 v0 ^1 A5 T
    Lambek代数, [) e; K% a+ F
    格序群4 s. q( G8 _# r" ]
    格子下令半群
    5 B' T( A2 ?& a# `8 r# |格序环1 [; H; K2 u( a0 j* @
    格序半群; {6 A9 ^) \3 I1 N) [! ]; G/ g# J

    9 `) c7 W4 ?/ B% \( Q2 r左可消半群; q: Z: K/ V) w% r. [: d
    李代数
    : X- K, [- Q; y! Z0 n  I线性Heyting代数
    7 [1 O, l, \) G7 q* n1 T线性逻辑代数
    ; M) B8 j5 d8 B  ]" z; L" U, I线性订单  X7 |8 ~) U7 @+ U2 b- c3 ~
    语言环境7 ~& i" q) i3 H& u2 K2 X' e/ H6 B3 Y
    局部紧拓扑空间5 }. c( h, _8 V- Q* D( u1 C% I. X
    循环
    : D2 }0 a* l3 G6 \1 s7 Gn阶Lukasiewicz代数* v8 x5 ~" h+ p9 Z; ]% j
    M -组* B0 H, a4 |# G9 E# F
    内侧groupoids
    9 Z+ s9 I3 P( W" b3 P8 e内侧quasigroups
    . J* o& }& I. t* j会见semidistributive格) Q7 {5 d. r1 y* w
    会见半格1 Q& ]& ~% h4 Z" \
    度量空间
    # x5 q3 T3 U+ @6 E( x* p模态代数
    ' w8 i/ }. L, j9 q模块化晶格( \) X2 v6 E6 |, d! S: ]# G& {4 H
    模块化ortholattices; t% M% \) ~' O! r8 M* [5 Y
    环比一个模块9 S8 i. K* E+ ^' @. q) ~
    单子代数
    ; t$ T# s( z. p0 d6 Z8 y) }0 F0 @Monoidal t -模的逻辑代数. A4 u% W& M- Q0 ^3 v. b
    幺半群,有限半群,零
    - X2 k8 j! I6 ~- O! `Moufang循环; G: q9 F% l" V% i* e
    Moufang quasigroups. O2 X# L! a* M8 t6 k" V# w
    乘添加剂的线性逻辑代数
    ! T9 z5 P* A, n0 [9 _* h; s, b, s5 `乘晶格. x2 L6 W7 X' X* p5 X
    乘法半格1 L0 d3 K# O& I' d: R
    多重集
    1 n* a$ c- f& ^8 j4 {MV -代数
    7 t- @/ D) W+ ]: rNeardistributive晶格
    + Y) c3 d! T* j* A4 v近环& K# x+ t( p  L# F8 ^- V6 N( i
    近环与身份3 \$ U' C# f) n0 `3 i' G; U6 d
    近田
    ( `2 b: X6 S4 q幂零群
    + x5 k, `& e8 |* U& I* }3 H8 P+ |非结合的关系代数
    9 b& I& I. s0 ^+ ~. U1 ^( _非结合代数
    6 A5 Y5 r4 R+ f4 |" R; _8 n/ ^普通频段# i4 Y0 m  Y$ D, A
    正常价值格序群% ?  B8 F* i3 k  t3 f3 @
    赋范向量空间  D! T% K0 S2 ~2 ?& ]! U, U
    奥康代数
    & c: \! c" ^4 z" Z订购代数
    0 E8 B* T/ O$ p. Z) r有序阿贝尔群# z4 W& f4 I! F: R
    有序领域) M& L) M9 f, D- U& A6 [
    序群& E1 J  `+ b$ f9 \3 a7 e
    有序半群
    $ q' a, M# \8 D" K与零有序的半群7 i( Q( L9 x2 q# n2 I0 C- u$ m6 g
    有序环% y6 I8 ^1 f' v% Y: @+ Q0 i
    序半群,有限序半群,有限下令零半群
    ; u& n+ t* V8 |7 Q+ A有序半格,有限下令半格
    : _  I: m0 N( C& ]有序集4 v4 x9 \( _! o9 b2 D1 a9 g( L
    矿石域6 T, {4 Q9 \5 {- E$ x
    Ortholattices3 S! E3 z2 k/ `4 V; _* D! \8 s
    正交模格( v( P6 k4 l9 A+ @5 R
    p -群
    ' O" g- N& j) |部分groupoids, T* L8 b2 k1 ?6 s* n/ V* \
    部分半群2 z* q" i% m7 s; x) a
    部分有序的群体/ f3 e1 o3 I6 |7 Z
    部分下令半群) J% [, G5 m3 S" B
    部分序半群! Z0 y+ f. e" G0 z
    部分有序集2 j7 \" y1 a6 [) w# Y
    皮尔斯代数& A% U( Y' ?; ?4 v% z, u
    Pocrims6 t! u! Q; U" k8 P0 R7 o* l
    指出residuated格0 X! K2 K% d( x
    Polrims6 k3 }1 e, `" a2 I' a' p9 @8 {
    Polyadic代数" Z* n% p! J* X4 \, J& e
    偏序集
    7 B  j1 q0 H% M+ g- A7 p邮政代数
    6 Y* s" Y. z& }6 m% j  XPreordered套
    , l7 K4 W/ q. z; q普里斯特利空间
    ! r4 }: @* z7 N5 N2 M' F% `4 m主理想域
    4 c1 P+ O& b! r: m8 P进程代数0 F& O* o4 O" p* S0 X* [
    伪基本逻辑代数& R- B2 x5 y" J0 P
    伪MTL -代数; i7 }) q: M  n$ `. ]% h
    伪MV -代数' b+ Z& S7 u0 S' G' }; j
    Pseudocomplemented分配格2 \$ m$ D5 M2 l* Z0 }
    纯鉴别代数+ V5 j6 N: t" D2 T: q) }7 x
    Quantales! u/ e% A: u: p' r3 x8 E
    Quasigroups4 R, B5 u; V) G! n( ]2 j
    准蕴涵代数
    % R5 o" z! x6 r# Z. S  y/ }准MV -代数
    , L3 Z! g- z4 K& j2 J- F准有序集
    ) w, ~" M* `# cQuasitrivial groupoids
    0 o4 c& W, s/ v4 @矩形条带2 B' o3 z/ u9 ^: z1 W' U
    自反关系! d* V; N7 j! T6 M
    正则环8 Z; y6 I& k/ _
    正则半群
    9 k1 W# y0 _8 D5 O" A* M$ y关系代数+ q2 U' Z2 H. }( u
    相对Stone代数! f  ^# R# b: s
    相对化的关系代数2 j5 s, ], w2 V- B7 f
    表示的圆柱代数
    8 Z' @4 I! H5 p; g, N- P表示的格序群体6 B2 Q; j6 `" }8 Z1 r4 V# I4 C
    表示的关系代数
      Y! P  s. E9 L9 c+ T# L表示的residuated格
    # q! u! R+ w: V7 c: n+ T& V! l  HResiduated幂等半环5 k+ W4 J# }, N" o1 J- L
    剩余格序半群2 d& R, H% v  Z% ?! Q, Q$ ]
    剩余格3 b* w. `' |- S
    Residuated部分有序的半群
    4 {7 Z4 F- Z/ S7 T0 v: C- T& NResiduated部分序半群; `! B" X3 J( N- e) Z8 \* b
    戒指- T3 d! [0 @. B
    戒指与身份
    % Z1 p% l* I. V1 D. n$ d, w: @施罗德类别& |  ]- U! d, A) }% z: d
    Semiassociative关系代数
    % s- W9 _6 h. M# HSemidistributive晶格
    % R3 [% `( F3 @# D; P半群,有限半群
    6 O6 [8 k0 V( o" M* l& I+ ?) w半群与身份) s; g9 R0 y: l' F
    半群与零,有限半群与零
    ( g- K3 B# U2 c4 R6 J2 R; j& S, C半格,有限半格
      ~1 m# C, A! m5 c9 _9 H与身份,与身份的有限半格半格
    # o% n! O8 Q3 x% E9 B半格与零3 O# I+ f, G$ k5 ]: M! {7 n
    半环
    % z$ I5 `* E1 Q* z. ~4 s半环与身份
    $ X4 D, \5 g" x3 t3 L/ T: D半环与身份和零
    ( W( ~5 ?2 u8 T7 P半环与零
    * f4 b: A! p0 e& [连续代数2 V& U6 L% t1 T" V: z, C0 O* F
    4 x* A8 Z6 l9 O* a  _
    " m* f* j. M1 E/ b% T2 b6 u- l- |. Y
    歪斜领域
    * q& j: {) E* nSkew_lattices
    & P+ R0 W9 \, Y0 X* f小类: D/ S% m5 ?* Y( P0 _0 Y% L, f
    清醒T0 -空间: A. F/ E. Y+ S
    可解群
    8 l0 L2 \$ D$ u' k3 X7 s1 Q0 wSQRT准MV -代数
    ' m' G0 A& f6 p' h4 g稳定紧凑的空间
    & ^% L& M6 |5 b- v1 g. u施泰纳quasigroups
    * o$ [  E: ]- E1 iStone代数1 }/ n7 a- I4 g/ V" l! y% C
    对称关系1 O4 U5 L2 s' k9 D# ^1 j& [
    T0 -空间
    5 m& k. u* u+ P5 mT1 -空间; S$ X* I* I% \4 M# x
    T2 -空间
    * Q6 w7 i- ?% h2 V4 e% j. i塔斯基代数+ v: T0 b5 B1 m2 B5 w/ `) e0 C
    紧张代数
    . V5 A6 w1 m1 I; M9 A" |时空代数
    ' X% C. m: [7 A4 F5 `$ d, S拓扑群
    " {: i+ X$ n1 U: N# Z- f$ F拓扑空间6 A9 ]& L& H: p. E7 G' _! ^
    拓扑向量空间# {) t2 C( a8 w+ L$ |
    扭转组
    " N; m' o3 ]' F& c全序的阿贝尔群. r; g5 E: N" p1 T$ ^
    全序的群体
    ) _5 x3 y! C( h完全下令半群
    ) Q6 t3 @! E. A% @4 v5 y: c. M' pTransitive的关系
    6 z$ I. a  V* G5 ?4 q! m0 s/ t! B) l
    锦标赛
    - B+ O  z" H" @8 P$ i1 B! T一元代数
    7 s4 ^( Y8 l: H) i) T唯一分解域- j1 p0 ^5 d  @7 Q1 |
    Unital环
    . C+ Q" X/ @& g' O5 v向量空间/ U$ z; |1 r' ]8 L; u" [4 @2 M
    Wajsberg代数. u7 Q7 Q6 Y3 B: u( Y9 q
    Wajsberg箍/ ^- v4 T/ H  k+ E% ?' @. y
    弱关联格
    6 J4 e4 z. F$ \! p: [, {/ q弱关联关系代数
    7 t3 T* k. l9 U/ k$ r# |弱表示关系代数
    回复

    使用道具 举报

    74

    主题

    6

    听众

    3289

    积分

    升级  42.97%

  • TA的每日心情
    无聊
    2015-9-4 00:52
  • 签到天数: 374 天

    [LV.9]以坛为家II

    社区QQ达人 邮箱绑定达人 发帖功臣 最具活力勋章

    群组数学建摸协会

    群组Matlab讨论组

    群组小草的客厅

    群组数学建模

    群组LINGO

    回复

    使用道具 举报

    qazwer168        

    0

    主题

    4

    听众

    53

    积分

    升级  50.53%

    该用户从未签到

    回复

    使用道具 举报

    ZONDA        

    0

    主题

    4

    听众

    3

    积分

    升级  60%

    该用户从未签到

    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-1 12:23 , Processed in 0.856730 second(s), 76 queries .

    回顶部