- 在线时间
- 2759 小时
- 最后登录
- 2017-9-15
- 注册时间
- 2011-4-3
- 听众数
- 538
- 收听数
- 4
- 能力
- 80 分
- 体力
- 1764 点
- 威望
- 27 点
- 阅读权限
- 150
- 积分
- 5990
- 相册
- 0
- 日志
- 0
- 记录
- 5
- 帖子
- 6675
- 主题
- 3503
- 精华
- 8
- 分享
- 6
- 好友
- 1721
TA的每日心情 | 开心 2017-2-7 15:12 |
|---|
签到天数: 691 天 [LV.9]以坛为家II
群组: 2013年国赛赛前培训 群组: 2014年地区赛数学建模 群组: 数学中国第二期SAS培训 群组: 物联网工程师考试 群组: 2013年美赛优秀论文解 |
# -*- coding=utf-8 -*-& b; m2 Q/ n% M/ e
& X: {: b- p5 t6 j
import math' l- m: R7 {% I2 |; S+ S: |
import sys _: g4 V1 c% H% W5 W+ }
from texttable import Texttable* D& f0 L2 J+ L4 G2 e
6 [7 ^+ `1 b/ a) D# U. R
2 a N, W0 }& `- [( Y; }# d& f( o6 E, d: L9 {* ~* Y
# 使用 |A&B|/sqrt(|A || B |)计算余弦距离5 f. ~( y( U, E; T7 l
#
: W6 e- x3 C3 p- r#5 R5 ^# J8 Z( d' }2 Z8 Q) L
#3 W; I- a" J6 I. F& L: V
def calcCosDistSpe(user1,user2):. V2 k5 C" d$ w/ g# ]4 A
avg_x=0.07 x6 U" w; c; g4 {
avg_y=0.0
% Q2 F" |) Y0 f8 ]+ U+ i: r6 \6 N% ^ for key in user1:% @- B ~# _; |1 P5 E* {
avg_x+=key[1]: ?: {5 t9 `0 i1 a9 K
avg_x=avg_x/len(user1)2 G4 \5 g/ N: S7 Y$ m* k! G i2 b
9 c7 i$ n7 \* K* k
for key in user2:
- f& g6 S' _4 V. w! L- k' A7 M, e; h( J avg_y+=key[1]
8 }8 w+ j3 s B0 c; f7 z. c2 O& G4 i avg_y=avg_y/len(user2)
7 W- v+ \& b" t+ ?) V
; G0 X6 l6 L1 I' ^" Q! o u1_u2=0.09 r, X" J8 \* D# {# @4 A5 ?. t) n
for key1 in user1:+ e! k2 v* f: O* f# n
for key2 in user2:' H3 C* C! f* R: p
if key1[1] > avg_x and key2[1]>avg_y and key1[0]==key2[0]:
8 {. X- S; P; d4 ?" r! v5 V8 a3 a u1_u2+=16 ?' ~' r, Q6 ~
u1u2=len(user1)*len(user2)*1.0
# k; y5 i3 W3 K: {2 O4 u9 A sx_sy=u1_u2/math.sqrt(u1u2)
3 `7 c8 V7 b7 _2 A return sx_sy: i4 I2 h( ], Q; I$ a
, M n0 h8 A: V6 E1 ?9 W4 V8 r
& B& X2 ?2 A2 {1 }
#
9 \* K! K+ j& y3 P# 计算余弦距离5 P9 O/ \/ Y$ X: u$ c, R
#$ i) G4 l* Z L3 ?
#
' Q% a. r% c! I+ Xdef calcCosDist(user1,user2):. X8 j A3 S; x. Q/ j6 P
sum_x=0.0+ E* o: n6 |9 [7 O
sum_y=0.0- w: C8 I/ w/ n% N- G: R# {
sum_xy=0.0
" u2 T: E2 M8 B- ^1 C for key1 in user1:& ~9 K4 S; c2 u8 `7 @
for key2 in user2:, f. W2 V5 j* W# E, z6 w* H0 q, ~
if key1[0]==key2[0] :
- {# d0 |7 \6 G. A, h sum_xy+=key1[1]*key2[1]& c) {' T$ M+ C
sum_y+=key2[1]*key2[1]: J; E+ |( R4 i: ?* n
sum_x+=key1[1]*key1[1]! A# d' G2 h q
2 s4 p% |2 B# s8 N
if sum_xy == 0.0 :0 p' a! F3 ^) ]" ^
return 0
7 g5 a- w/ n- V sx_sy=math.sqrt(sum_x*sum_y)
' }5 p. H0 W& e( Q return sum_xy/sx_sy* ?& R9 j9 {( f
! P! M0 D& b! D7 Q$ p
^, j% b a2 L' G
#
) b' V( e) {6 W# W) y4 W, S#$ ?5 q# o! y7 ~; j5 g, f* q2 i' A
# 相似余弦距离
# }8 ^5 D+ d# y. T9 o4 d* |9 T#4 U4 m. U' U& K6 i3 V K
#. Z3 [ W5 w4 q; X7 T
#
# w+ l* r% _ ~6 D% ?+ Ydef calcSimlaryCosDist(user1,user2):, v) u% B8 p5 u8 X/ J0 S- a F/ b
sum_x=0.08 l( x. ]7 F" [' r" f9 q7 }
sum_y=0.0
: P6 X2 ^6 X2 L1 |9 r) P2 M/ I9 K* u" A sum_xy=0.06 [( V0 K6 _2 @
avg_x=0.08 V R: h; C t
avg_y=0.0- n8 H3 N' T" D2 _4 G# D7 \! x1 h
for key in user1:* ^$ d& o$ q) p- k; h1 K
avg_x+=key[1]% D9 T$ Y' U4 S3 w# h
avg_x=avg_x/len(user1)# \2 s3 E0 u5 W% ] n
3 Y$ N/ e- u, R0 q3 o6 g for key in user2:
! @, a% k3 w# d$ G avg_y+=key[1]) r: A2 S( q( |7 f, W
avg_y=avg_y/len(user2)
d% @! u' z. `5 `& G0 [% D& u$ x+ s0 b
0 r7 M/ Z7 V9 Q3 j8 r) S* ^0 u for key1 in user1:# R6 x; J A# U6 v, D
for key2 in user2:
" g! B( C! p; I+ r0 P i if key1[0]==key2[0] :
0 w# Y+ ~/ v' \3 P( r* j9 Q4 \+ S sum_xy+=(key1[1]-avg_x)*(key2[1]-avg_y)
8 F7 P$ ^# A8 a. v v! t5 i3 q; D sum_y+=(key2[1]-avg_y)*(key2[1]-avg_y)4 I ]$ Y7 B' n" Y8 [8 e& D7 W* _
sum_x+=(key1[1]-avg_x)*(key1[1]-avg_x)1 |! x6 T+ i+ G" R. ?
& M% d8 R& K( D# T; @. R5 q7 S
if sum_xy == 0.0 :
& L7 B* Y2 o1 t return 06 s& T" F6 y6 p O' |+ ^4 q
sx_sy=math.sqrt(sum_x*sum_y)
6 x5 k5 W$ B( _% q- B R return sum_xy/sx_sy
9 }% V& Y* c' N * y% B" V+ s) K8 O) c8 G- s# E
0 N% Z; l7 r+ V& M: H#+ j$ G V/ W; v# c3 ~
# 读取文件3 x5 E+ n( ]" \8 o) z7 a. J
#5 E+ d. C6 o9 y$ ]9 @
#3 o3 B5 I' K p2 y3 B; R* i. d
def readFile(file_name):
' Z4 }$ Y6 q2 B0 u3 b contents_lines=[]
3 \/ L$ m' t% t! |/ z' ` f=open(file_name,"r")
$ o2 q: A6 I3 a5 T% y$ K4 J contents_lines=f.readlines()9 P" ]- ~3 K/ p C, w, ^9 G
f.close()
5 I; J, u/ l: L! J$ a+ ~ return contents_lines
6 S* @$ k$ g: {, ^2 L9 v- i
- W3 s% c d: `
+ Y/ C, U7 ~% r2 Q+ A* G
1 I4 d+ b* E- A) ~5 W- a& s/ K#+ P4 |9 i/ h. d
# 解压rating信息,格式:用户id\t硬盘id\t用户rating\t时间
& u6 d* L/ G' ?; \# 输入:数据集合
2 ^. q; x3 I* C, X/ x/ I# 输出:已经解压的排名信息
2 Q" k8 A- U% f8 m#
5 f: k! Z! @% c3 L! d1 gdef getRatingInformation(ratings):0 v* J$ s% s8 w; U5 p% N
rates=[]! B5 i; ]- k7 J3 l5 u8 Z
for line in ratings:/ X/ r; X4 a# J1 U. U1 _- W
rate=line.split("\t") h/ l8 y5 g& E7 P6 i' Z
rates.append([int(rate[0]),int(rate[1]),int(rate[2])])
; a2 c1 j5 j. b4 Y) B3 R+ e, q" m2 D return rates
0 P6 u) S! J- v7 r: w9 ^
7 D, I& I0 R( L: y! k( _8 a' L; B; F; ?# q3 C( r
#
5 ~2 i: i" c9 q# 生成用户评分的数据结构
9 s& R ~3 K0 C* e$ A& G#
6 h/ ?4 k+ T2 u o- f; i5 e# 输入:所以数据 [[2,1,5],[2,4,2]...]
! |$ Y) w2 F3 ?* B, `% e' U# 输出:1.用户打分字典 2.电影字典, A- ?0 W# Q, P- ]9 m" T
# 使用字典,key是用户id,value是用户对电影的评价,1 Y+ J& I' ~6 B+ v+ Y, p, e
# rate_dic[2]=[(1,5),(4,2)].... 表示用户2对电影1的评分是5,对电影4的评分是2$ j8 C/ I0 [8 A. q% o& f% {
#$ J+ r, r# q2 ~
def createUserRankDic(rates):! {* J) |0 D5 H/ b# p# J
user_rate_dic={}1 a7 B8 u: e' Z
item_to_user={}
8 `9 y" o( N& |* u- }& P for i in rates:
! m4 v: y5 n" ^ user_rank=(i[1],i[2])2 t6 {7 {/ K$ q: a# j& F% n" n
if i[0] in user_rate_dic:7 e+ X% i% ]$ c$ H7 y
user_rate_dic[i[0]].append(user_rank)% U ?$ h. U! l
else:& }0 S' X- R3 N, o
user_rate_dic[i[0]]=[user_rank]/ g" h7 W: q" ^8 p' X
9 l5 Z3 V; ~- H+ l/ ]
if i[1] in item_to_user:/ I& T0 F4 J; t& r) s% H7 Z
item_to_user[i[1]].append(i[0]). I4 _* ?5 J7 B( X |' L
else:9 x& E0 S! A8 M- i
item_to_user[i[1]]=[i[0]]6 q% \8 M+ U6 E) N
^ g- u0 R" {7 [( n8 F3 K
return user_rate_dic,item_to_user
9 m e2 W9 y2 ~, Q+ z' ~
( ~* j# i7 r- n( c/ N8 ?7 F
/ _6 |7 |0 |- X#
5 G& j! p! s6 }' e7 E# p L+ r, ]# 计算与指定用户最相近的邻居
- ^ R3 p/ Q! Z9 r3 m" Q3 O# 输入:指定用户ID,所以用户数据,所以物品数据 j: c- D; |, x0 d4 A& i' ]( B
# 输出:与指定用户最相邻的邻居列表
Y- Y8 _1 H& R/ O#, m9 E8 [9 I& r" q/ I$ J- P# z
def calcNearestNeighbor(userid,users_dic,item_dic):& C( M9 I9 |" H7 L
neighbors=[]
0 B+ j1 i/ F! K G. _ #neighbors.append(userid)
, {6 q' \, h' p4 w for item in users_dic[userid]:
+ q& e! V* T3 Y2 Q for neighbor in item_dic[item[0]]:
# ^/ ]; k; t. w( q if neighbor != userid and neighbor not in neighbors: : F' _: G5 H0 r! Q) B( [0 s( S
neighbors.append(neighbor): U9 T0 B4 ]4 o% B
+ z0 H% i6 J1 C4 F' ?; o P& p neighbors_dist=[]
8 \$ b4 ^4 V) Z. G for neighbor in neighbors:
4 r3 i2 X, N' z! ^8 L V dist=calcSimlaryCosDist(users_dic[userid],users_dic[neighbor]) #calcSimlaryCosDist calcCosDist calcCosDistSpe/ D! E* i2 x2 I" _' j) M \3 i. K
neighbors_dist.append([dist,neighbor])& D* T) e7 V+ C( y4 M
neighbors_dist.sort(reverse=True)
3 t, c1 i9 f5 j& k3 t* L #print neighbors_dist8 U; a( \$ V7 ~9 j6 }% b
return neighbors_dist
8 c7 \- e( ?( d8 G# A# ~$ k. ^; C- c' i6 A! j8 e: W
$ Z E1 R3 }) ~' B
#4 X3 c; s! { V' P: N
# 使用UserFC进行推荐! h4 ?. b9 b: b
# 输入:文件名,用户ID,邻居数量
6 z3 @& x6 a# ?; o9 A6 ^" ?# 输出:推荐的电影ID,输入用户的电影列表,电影对应用户的反序表,邻居列表4 `# P( W' q( U$ O
# m: L. D# c$ t5 v' Q
def recommendByUserFC(file_name,userid,k=5):
; e% f. I' S- ?: ~1 W, A+ V
# s8 H. W9 N2 X9 N #读取文件数据" Q! ]2 A. |6 R8 I
test_contents=readFile(file_name)
0 P9 E% n2 Y+ ]- Z" }4 f
5 k ^, ?$ [: b7 k& o6 Z #文件数据格式化成二维数组 List[[用户id,电影id,电影评分]...] 1 L; @8 v! o1 T! ]4 G$ T3 {2 d+ y1 [
test_rates=getRatingInformation(test_contents), @" J4 i! o; p5 z; [- \6 P
* r3 z' H% l+ M0 Z3 X6 ] #格式化成字典数据 / K. L# L& O- u$ J
# 1.用户字典:dic[用户id]=[(电影id,电影评分)...]
5 I; ~+ X; o" I( ^- E # 2.电影字典:dic[电影id]=[用户id1,用户id2...]( r9 }2 q2 e( A5 r; A) q5 S! ?
test_dic,test_item_to_user=createUserRankDic(test_rates)! W( b' i0 Q" D& M6 M0 s
$ g, G; z$ c p5 f! q #寻找邻居# [. k4 D4 G& t/ q0 C$ P- B% E; Z7 A1 m
neighbors=calcNearestNeighbor(userid,test_dic,test_item_to_user)[:k]
0 ~! h2 x: n! a' g2 e1 t- K' P& a
. _8 n2 X: p) ?: S recommend_dic={}
$ r. r! m1 ], i9 V% E K4 S( t, ^( h! l" Z for neighbor in neighbors:3 B. q. s5 W$ s! Q# K; v, ?) s, s4 r( B
neighbor_user_id=neighbor[1]$ z1 ]8 t3 z! t
movies=test_dic[neighbor_user_id]
2 a2 @( S* h k5 D for movie in movies:
2 W; u, }9 Y% J$ \ #print movie: a4 h1 q% L& I& u. U5 ?; q+ V# B
if movie[0] not in recommend_dic:
6 r6 |# _9 ^+ N" ]! r/ V recommend_dic[movie[0]]=neighbor[0]
- v% B5 D1 C e$ C- s0 i D1 z% p! g else:9 Q1 o! o! u; I+ ]. ^& H
recommend_dic[movie[0]]+=neighbor[0]
% z2 {7 d) ^' t& z7 I #print len(recommend_dic)& T7 T9 S4 Y- B2 M
7 b! D; H/ n+ O4 s$ ~+ b3 L+ |
#建立推荐列表
" G3 Z! S1 b0 t. e, p5 X' s recommend_list=[]
% ~ ~1 Q0 G9 s1 Y x$ v6 J for key in recommend_dic:; {* O6 y% O/ G( H7 }; S5 r
#print key4 \8 v" A2 w$ w8 R3 z2 D
recommend_list.append([recommend_dic[key],key])+ Z' j f' R) k8 X+ c- y
, g: B& M+ T5 L \8 x7 _% r3 _ : M0 A3 m( q2 g" z3 V8 U
recommend_list.sort(reverse=True)) n8 B( g# {: O) }
#print recommend_list
6 X V e& q! T3 q2 B( R user_movies = [ i[0] for i in test_dic[userid]]
! A( N) d# d! L2 T6 H- N
. @( L* ^; g3 W: g: f. d return [i[1] for i in recommend_list],user_movies,test_item_to_user,neighbors
1 i4 s- ?9 q* W K8 I+ T" V9 Y& e. ^ . q( B7 |) q% V; b* O
1 ^7 J' e* C9 v3 T
1 ?' U7 G( p# v! M" Q#
2 G# v. m' R& C, n2 B- g/ a" r2 b#% {$ j% O! ]! w# d. `+ M
# 获取电影的列表4 j* q: m: I) T4 ^8 Q7 `) _
#
2 J3 s7 |+ n) h8 {#
$ |4 q8 [6 c* F1 `7 K#
0 V( }; P/ o- y o3 I, T3 H$ Wdef getMoviesList(file_name):% o# a4 o/ k4 O/ Q3 G! s* J
#print sys.getdefaultencoding()! `5 C7 b+ `5 F' e& N1 Z$ ^
movies_contents=readFile(file_name)
! q8 O2 P: W/ D% c. E! e movies_info={}
. U0 R* P" J. r3 X! y% W for movie in movies_contents:
) H& Z; P( T8 l9 B: Q" O movie_info=movie.split("|")
( J$ F9 e1 @+ C% j# m7 ^: L( P& P movies_info[int(movie_info[0])]=movie_info[1:]) w3 `" z% S9 u2 v
return movies_info
5 p4 p/ I, ~7 `0 Q - _6 m2 l: l, l ?
: I3 E) P" G @
) s8 E1 V% P( D#主程序, V7 \- v: a! v# u. ~
#输入 : 测试数据集合
7 t) P5 I: O. I- d; G" ^% _2 r7 S/ Cif __name__ == '__main__':
& J% Z" n9 S( o4 t3 m3 R reload(sys)
% O }: Q) W" z/ L4 k: | sys.setdefaultencoding('utf-8')
s' U$ b6 [* z- x3 Q3 h' j movies=getMoviesList("/Users/wuyinghao/Downloads/ml-100k/u.item"): n8 B a8 P) \$ T& q* t8 u
recommend_list,user_movie,items_movie,neighbors=recommendByUserFC("/Users/wuyinghao/Downloads/ml-100k/u.data",179,80)
, e1 A4 S* C, k6 l' z' A neighbors_id=[ i[1] for i in neighbors]0 G: m; y! [6 ?! [8 x! _
table = Texttable()
- {% `' ~7 A1 D, G table.set_deco(Texttable.HEADER)+ p, }3 u' j1 y: f5 L) h
table.set_cols_dtype(['t', # text 4 \$ ]0 }9 y# A2 g# j# {
't', # float (decimal)8 m- a! |% |- l+ ?& \
't']) # automatic6 A5 |* ^* Z/ f# v! ^- d
table.set_cols_align(["l", "l", "l"]), b7 Q e, }! F& ]# R" w' x }
rows=[]6 ]8 S4 T" y2 Z! [( P
rows.append([u"movie name",u"release", u"from userid"])
7 E% q% Y8 A8 {' K for movie_id in recommend_list[:20]:5 r* G' ~) z) f1 u3 g# M
from_user=[]
- ~5 A& W9 T* ~ X; L r for user_id in items_movie[movie_id]: @9 J2 [: T. s% ~- W
if user_id in neighbors_id:9 \# i1 Z: s5 k$ j9 h. i
from_user.append(user_id)& r) {0 M& Z/ ]$ s. {1 q* w
rows.append([movies[movie_id][0],movies[movie_id][1],""])
5 s W* x N* L, g table.add_rows(rows)6 u# R( M0 G% N4 p% u; V% E( k
print table.draw() |
|