- 在线时间
- 2759 小时
- 最后登录
- 2017-9-15
- 注册时间
- 2011-4-3
- 听众数
- 538
- 收听数
- 4
- 能力
- 80 分
- 体力
- 1764 点
- 威望
- 27 点
- 阅读权限
- 150
- 积分
- 5990
- 相册
- 0
- 日志
- 0
- 记录
- 5
- 帖子
- 6675
- 主题
- 3503
- 精华
- 8
- 分享
- 6
- 好友
- 1721
TA的每日心情 | 开心 2017-2-7 15:12 |
|---|
签到天数: 691 天 [LV.9]以坛为家II
群组: 2013年国赛赛前培训 群组: 2014年地区赛数学建模 群组: 数学中国第二期SAS培训 群组: 物联网工程师考试 群组: 2013年美赛优秀论文解 |
# -*- coding=utf-8 -*-
8 @0 z0 I* y9 l8 z7 g2 L* _
! F1 H) O: f! S7 Y' ^import math
: O9 O( f4 T0 \7 P) b" I& c- v7 I( ]import sys# {# k! x. ~+ i
from texttable import Texttable
0 C) H5 K) ]3 v* s9 o7 O
# X' V2 M* L: s, \* G7 I# d0 ]* H
#
) {1 n4 N" {% C, U6 A9 l# 使用 |A&B|/sqrt(|A || B |)计算余弦距离2 s8 \1 Z r) Q
#
6 {' k# `5 r8 e1 v3 V#
$ h: J8 n+ ~, g& J4 Y#
) K* R% ~4 a9 Z2 V A( }def calcCosDistSpe(user1,user2):5 E4 G* k4 Y( k0 H4 e4 s- o+ K
avg_x=0.0 d1 S4 l5 K, F( d0 l
avg_y=0.0; q, H7 r% r9 W3 q
for key in user1:' E O" s* M$ R2 ^% i# L# A
avg_x+=key[1]
" h1 x9 c, y6 Z2 l avg_x=avg_x/len(user1)
# M7 V. \2 C* y# @* c b9 F2 ]+ A ; B# c; O7 \% f2 R1 u( i7 J
for key in user2:
. z7 [- m* `: _* L3 c avg_y+=key[1]
6 L, G3 E$ N- E* {( l2 k avg_y=avg_y/len(user2)1 z5 c, W6 W2 a$ M" j6 Z, i( ~' F
/ S$ B2 O% O3 d! ?9 ~1 J0 c+ o
u1_u2=0.0
+ p' v+ }) \6 G( }: X) D3 t* z for key1 in user1:4 _+ ~1 M3 t6 O
for key2 in user2:
! g/ i9 v# z5 y) k- { if key1[1] > avg_x and key2[1]>avg_y and key1[0]==key2[0]:4 i. {. K: n1 ~0 C5 T: p }
u1_u2+=1
. w$ x' P- q2 _$ p5 M" V2 `/ t9 h u1u2=len(user1)*len(user2)*1.0
! S, Z. ]4 J6 {3 M2 j% u sx_sy=u1_u2/math.sqrt(u1u2)* U" q0 J- C6 O% y7 G: o. t
return sx_sy' `6 ~" p' ~& Y( w Y9 t
, Z# b1 f' U% b! }1 o% A9 Y- s# d9 d7 T. x3 `: S/ ~. i
#
/ A: }1 Z! G( b5 J# 计算余弦距离9 N0 p0 Q) K+ V0 R( e
# e: h; c0 L9 n( O' w% T2 r1 z
#' ?! @" a3 P; X! S8 ^
def calcCosDist(user1,user2):
3 K8 c. W9 z% c5 ^: z: U sum_x=0.0* ~+ E/ U$ ^' D/ x+ m. }; U0 k
sum_y=0.0
. m. g7 g# a( l/ P sum_xy=0.0& F7 M: M5 h* P
for key1 in user1:3 w" |. Q' [: y, }& U1 C( `. F
for key2 in user2:* ^/ P; x1 N7 l3 g- N; g* Z2 z5 j$ S
if key1[0]==key2[0] :% E% x5 u/ M) u
sum_xy+=key1[1]*key2[1]
) u0 b5 C. h7 T* |8 o/ I sum_y+=key2[1]*key2[1] a; b) A: `9 F+ @9 b
sum_x+=key1[1]*key1[1]
; F, z, v$ d3 o/ x7 J2 C: M
: y- {; W! R3 Y6 U if sum_xy == 0.0 :( }$ x( s$ p- x+ l4 _% \, E! S
return 02 L& T/ R; }- l o7 u, w
sx_sy=math.sqrt(sum_x*sum_y) ( v2 b$ f4 H& J" X* Q
return sum_xy/sx_sy
9 \8 g7 Y4 V+ S' J3 }' C' K2 G0 m# f0 O7 c! _8 g
( o$ c3 ^ r) s( J
#
# \; o+ s+ \+ r2 T3 m#2 N& M& d k- b
# 相似余弦距离% V5 b. n! B! W+ e
#
4 A- j7 R: H6 L, f% w#/ u" O% l: |3 z$ U
#
# q' g7 |5 C! s0 ddef calcSimlaryCosDist(user1,user2):$ X7 \; Q2 p: [
sum_x=0.0
# W; t3 I* K \6 e. R; E8 v sum_y=0.0# P3 T- H+ S" Q) B: c. d2 m3 e
sum_xy=0.05 C0 c1 p' ?! w3 @% I0 \5 T
avg_x=0.0# R. X& k9 w) _, S) l
avg_y=0.0' r- f& T" P8 J, M
for key in user1:
% ~% K8 c- M" v" G n( E% f- n avg_x+=key[1]
2 k$ l: B0 J. b; X' U: l" a avg_x=avg_x/len(user1)$ E/ Q; S r6 U: Z( B
" Q3 w' {+ Q( O+ Z$ Y3 c
for key in user2:4 h) Q1 l a n. t0 y. D
avg_y+=key[1]5 Z7 x. z# G' U" @6 P$ P* e" \
avg_y=avg_y/len(user2)% ^, X; W# r& |% h7 A0 R3 p( d' x8 k
. P8 J4 e j0 Z- s% g( |2 k
for key1 in user1:
) f9 F* N6 Y4 F# N+ c8 F/ L for key2 in user2:, {, b' P' _# A* l2 D/ ]6 `6 @
if key1[0]==key2[0] :/ _5 h5 H! v9 Q+ U( u
sum_xy+=(key1[1]-avg_x)*(key2[1]-avg_y)
0 A- N; m1 G5 t) @- }* s: m sum_y+=(key2[1]-avg_y)*(key2[1]-avg_y)1 @' X/ N8 h3 a. S1 J2 m' s6 a, A
sum_x+=(key1[1]-avg_x)*(key1[1]-avg_x)
. V# l- n9 v' h6 A1 X8 J5 U
, N( V W O- R& U if sum_xy == 0.0 :8 K# p9 L- K9 l' [% X
return 0
9 O* i2 o" h) X$ B sx_sy=math.sqrt(sum_x*sum_y)
9 u: T# h: i. K5 s# l- s3 o2 X return sum_xy/sx_sy
+ ~+ g/ Q9 `. Q, a3 O- Z6 p ) N& g9 P, ~- [0 f0 v5 }
6 j$ t# n( Y/ g& N7 ^/ I& i#
0 z9 a6 m2 c; O- ?) f# 读取文件
( R4 X* m3 J7 b0 @#7 H |6 z& t# O! y2 R1 J% y
#
. W' o% [; `. }' U$ Kdef readFile(file_name):' y b1 W0 r. \& ]: i8 n, U
contents_lines=[]
$ y) p: B' T' t! t2 `: u9 x9 d f=open(file_name,"r")- A o* u# n; x) P2 p# F
contents_lines=f.readlines()
0 u6 d3 p- Q( b# z f.close()
5 I& g+ I. l9 l j |% y/ J; z return contents_lines
Z' X* }# [! ^/ G$ Q6 \
9 @/ {# u+ \. L, V7 {% h3 d2 t' [; R4 K
' E: J$ d2 W+ d8 S#9 w/ G1 |% D; |$ g
# 解压rating信息,格式:用户id\t硬盘id\t用户rating\t时间
5 k! D E' A% h3 R7 G# 输入:数据集合: I) d1 _) W9 K+ K* k: O
# 输出:已经解压的排名信息! \1 X9 f4 _' D8 R7 U+ O
#
D9 G4 F1 x( @, ~% O" tdef getRatingInformation(ratings):1 H: \9 k/ j) k' D# a( x7 D
rates=[]8 f, G9 }" t1 V% U$ o% {5 W$ }
for line in ratings:& a) }/ l- l) d! Z: f
rate=line.split("\t")
2 D5 {1 E8 n0 a6 b0 P) d, m" X rates.append([int(rate[0]),int(rate[1]),int(rate[2])])8 N% h1 \9 R' s# |
return rates0 E+ ~2 Y7 e4 k9 p* R
; L1 Z) O, h) y( Y% o8 i) ^
: k% k4 F2 |1 ?6 F. y#
6 y; q ]9 \- w8 e7 \3 h5 T/ j# 生成用户评分的数据结构
5 P$ d/ Z8 {% `9 ] ?# " j+ O/ V; S$ r h3 p5 ^
# 输入:所以数据 [[2,1,5],[2,4,2]...]& g" V% D% U% @& b; V) T
# 输出:1.用户打分字典 2.电影字典
z! V3 ]1 v5 x7 M1 Z7 ]# 使用字典,key是用户id,value是用户对电影的评价,
! W9 T k3 c0 D& p, m# E2 v" [; K* W# rate_dic[2]=[(1,5),(4,2)].... 表示用户2对电影1的评分是5,对电影4的评分是2& Q4 d( v1 l5 W# G" h
#1 F5 x8 w+ L, m7 @) V* I* n% e8 j) W
def createUserRankDic(rates):
& T' }( D. S* e0 p( R% d' x user_rate_dic={}) e" q, c D1 f1 {! D
item_to_user={}8 H/ i0 J4 p1 V* q6 T
for i in rates:/ ?4 r- l8 [) z3 ^3 s% a& ]
user_rank=(i[1],i[2])
1 H7 Z( r# a. x# o: m if i[0] in user_rate_dic:% A4 r# T3 l, Y" o2 z- `/ T( A
user_rate_dic[i[0]].append(user_rank)/ x5 \& l }8 c: w
else:0 p4 K7 Q! f e4 U0 Y. [" d Y) W6 q1 n
user_rate_dic[i[0]]=[user_rank]6 D5 Z) [6 M# R; Z
: {8 k' W7 I# a# F4 W: a if i[1] in item_to_user:
9 L* y' b! K5 w' I item_to_user[i[1]].append(i[0]), d) c9 B; m: T% v7 Z
else:9 @; F0 t. a0 H
item_to_user[i[1]]=[i[0]]
% Q2 K* r0 x: t 4 c# i) r( Z3 ^+ p) e
return user_rate_dic,item_to_user1 w! a. t k5 I' O" G
1 W) v- [% r3 L. D4 ^& p
' ]* H! h# v1 `6 |2 q/ G
#
' @5 o: }8 J, I" w# 计算与指定用户最相近的邻居
6 {% \9 z' u# F" H" j% U# 输入:指定用户ID,所以用户数据,所以物品数据7 k9 T' B. C2 o' i8 D) s3 x7 d( ~
# 输出:与指定用户最相邻的邻居列表
$ e* Q( m4 p0 z$ H7 Q# p% Q+ {#
+ G$ U* h2 r. F3 K2 Cdef calcNearestNeighbor(userid,users_dic,item_dic):
. }: X/ Z/ r' R; r2 a" g9 l) j neighbors=[]7 n! m1 s$ g3 ?0 O( a7 t
#neighbors.append(userid)
9 h0 c1 I' f; P5 F for item in users_dic[userid]:% u o' M8 O' y3 |
for neighbor in item_dic[item[0]]:* Y: L4 R3 T! l7 q. E, O) A5 z7 x
if neighbor != userid and neighbor not in neighbors:
3 |' o1 c) R# @5 Y$ h7 f" I neighbors.append(neighbor)& |8 F7 s7 [" l2 _) S, ~6 z4 r1 x
' z* B2 ]/ U; z# n
neighbors_dist=[]% e. F ~( j8 D7 L; e6 k
for neighbor in neighbors:
^. F$ f- U8 u8 x" y5 t dist=calcSimlaryCosDist(users_dic[userid],users_dic[neighbor]) #calcSimlaryCosDist calcCosDist calcCosDistSpe
$ {( \# \0 {3 {- a f neighbors_dist.append([dist,neighbor])' w+ E% i+ {6 _% p. V
neighbors_dist.sort(reverse=True)/ a0 C( h; z$ V. ?- k7 a
#print neighbors_dist7 ]& y$ }0 y9 s9 l7 J
return neighbors_dist
5 O9 _; D* h2 v! V: L$ c# C: v+ ]% D) V: n- P/ l3 o
9 L, B2 ~8 U: J5 l
#
% f3 O7 A8 Z b' o$ ^# 使用UserFC进行推荐% o' s9 [& ?& e, `& ?: C
# 输入:文件名,用户ID,邻居数量% ~+ \ H' `. o, S4 U3 ]- f. T
# 输出:推荐的电影ID,输入用户的电影列表,电影对应用户的反序表,邻居列表
: A/ l( v Z: {5 e8 T g; V#
' V! Y1 E6 v+ e' S: i9 Ndef recommendByUserFC(file_name,userid,k=5):
1 Z$ J( |7 {1 z7 f0 Y9 z2 M
# k6 s9 k3 W7 n! A" X) {8 X #读取文件数据 w: H3 K7 Y6 q+ g
test_contents=readFile(file_name)1 D4 a/ i2 q5 G M$ c2 `; @ \
5 U; X, T* m9 L- Z+ j* F+ o+ ?# T! E #文件数据格式化成二维数组 List[[用户id,电影id,电影评分]...] 9 w( C T1 H7 T" }8 t7 n4 u0 X
test_rates=getRatingInformation(test_contents)
6 M6 R. t. {8 ^; Y* ?' X- p! P0 W6 {7 A ; g: ~' q, D0 |& Y* @/ X
#格式化成字典数据
0 a8 B2 P( G) a4 J # 1.用户字典:dic[用户id]=[(电影id,电影评分)...]/ C% Z c# V7 L9 c/ r0 m9 k
# 2.电影字典:dic[电影id]=[用户id1,用户id2...]% q0 Y7 t4 q9 y7 l9 e* L6 @
test_dic,test_item_to_user=createUserRankDic(test_rates)/ Y+ ~4 u* k7 g c3 b
4 q0 U9 ?8 b6 j+ d
#寻找邻居
7 U$ O, E' r1 t8 h+ B d/ O neighbors=calcNearestNeighbor(userid,test_dic,test_item_to_user)[:k]( @! Z. A: ]- B! M6 I
0 v f- C+ Q- y( @4 c2 k recommend_dic={}/ Q2 q d/ b6 v$ x
for neighbor in neighbors:
; C. S1 Z `! y neighbor_user_id=neighbor[1]1 U+ K! f, ^0 `1 w4 u
movies=test_dic[neighbor_user_id]' N* a2 t) R i- E% o8 |
for movie in movies:0 O3 i, ^& H' \5 F9 T% T9 Z
#print movie
0 L- a4 ^3 M0 W* H( L4 j if movie[0] not in recommend_dic:
9 n$ n. \6 i7 P0 _, S recommend_dic[movie[0]]=neighbor[0]6 m4 y( s# ?) j" s
else:
# Y5 J; y* ~ ? U recommend_dic[movie[0]]+=neighbor[0]# S# e0 ~3 i9 ?0 ]$ g( u3 d1 W
#print len(recommend_dic)
1 }& T" {# h3 F) l9 v4 Y8 m- w
9 y0 }3 H" q% b- R) |; L& }5 N3 I #建立推荐列表' u. x3 }0 `+ ^
recommend_list=[]
# A- U+ _/ R" a% a' l for key in recommend_dic:6 M/ Y, V1 Q& |
#print key
; v" P# M: C2 U o3 @3 Z$ ~ l4 {* u recommend_list.append([recommend_dic[key],key])
3 x' Y# v& j' h# E" |9 V# Y- c + l+ h4 y9 D P, T( s
4 x6 Q+ C, P0 m! q2 x% Z) p
recommend_list.sort(reverse=True)
& c) a& w" K8 I$ P0 Q! M* ~' k #print recommend_list2 [5 q: D: ^, N I2 y$ v' h- @
user_movies = [ i[0] for i in test_dic[userid]]
5 n' Q3 l1 U/ F# \, t: O* n7 c% J; S# y P
return [i[1] for i in recommend_list],user_movies,test_item_to_user,neighbors
' o# B( _! J( J9 ]0 P3 G3 f0 A& q
. Z0 g8 B0 x" v/ B6 v1 D. w
. A, t( {1 O( s: u# C8 m0 A2 N [8 M
#. ?; a9 U* B( ?
#! g L4 C( M$ M; P5 L1 |% U1 H
# 获取电影的列表0 s& f- l: B2 E& ~
#
& y# n+ ~4 r: B* p/ t; s#
4 x. O1 e7 G* ~% a+ l4 q. Z' Y% A#& p' {' F5 G+ T' b* S' s; e3 e
def getMoviesList(file_name):0 P8 r. E; O$ v/ I' x4 n6 Q
#print sys.getdefaultencoding()
% L- |& k5 s* |. _+ g movies_contents=readFile(file_name)
% ?6 q$ j, G' F3 I+ O; o% k. d movies_info={}
3 {2 P; x* l* S& @& [1 |: d, L o for movie in movies_contents:
2 }: F4 H* s0 X1 `2 ]3 z/ K: T movie_info=movie.split("|")
5 a7 Y) [2 u4 C" O2 Q movies_info[int(movie_info[0])]=movie_info[1:]
. C% E& W) a' N3 z9 k& ] return movies_info0 P: [- F6 t+ _ `3 S
, r" \3 y! A$ H( n$ Q" }% Y
) D) x. j0 l" d
- g- |0 R, X- N' Q#主程序' N }( I t. l! s, c2 x
#输入 : 测试数据集合
9 H; g. M- H! Q! y; D+ `/ e+ uif __name__ == '__main__':
$ K7 V( ]& ^& H! b( g! ?, k reload(sys)
; B9 c7 W* U2 o" ?# E# b$ ^ sys.setdefaultencoding('utf-8')
/ x0 z: j% H! p5 A- s! C" U movies=getMoviesList("/Users/wuyinghao/Downloads/ml-100k/u.item")
7 W% L% q6 z* t recommend_list,user_movie,items_movie,neighbors=recommendByUserFC("/Users/wuyinghao/Downloads/ml-100k/u.data",179,80)
0 L0 z3 c, v. [: ~ neighbors_id=[ i[1] for i in neighbors] @; _! T/ Q2 p- L' Q
table = Texttable()
6 R! q' e/ k* ]8 o9 Y+ q1 W2 p table.set_deco(Texttable.HEADER)6 o2 j5 j+ [% N9 ]7 e6 ^3 F
table.set_cols_dtype(['t', # text
& z: Z* }7 z i( m+ s4 v" ~5 k 't', # float (decimal)5 ?$ `4 R$ C0 o P% f
't']) # automatic; w& _5 Q P+ M9 ?3 c
table.set_cols_align(["l", "l", "l"])) e8 X6 y# ^" \- u4 d6 F- o
rows=[]
" f5 j, b& U" r5 f4 g" E- j" s/ { rows.append([u"movie name",u"release", u"from userid"])* N% y/ {* [/ v+ @
for movie_id in recommend_list[:20]:
0 J8 y* r4 c5 }2 z1 K3 { from_user=[]) O/ c& M) ^( P# X5 U5 F4 ]9 R4 B6 a
for user_id in items_movie[movie_id]:2 C! y6 \+ g7 Y/ Z
if user_id in neighbors_id:
0 d- a5 n+ U- }( w3 O* l from_user.append(user_id)! A# p( q: J( S$ M# B0 \0 |
rows.append([movies[movie_id][0],movies[movie_id][1],""])! C) |. u( B6 Z, F4 E
table.add_rows(rows)
5 i" N% d% l/ E; }( H3 d/ Z+ n print table.draw() |
|