- 在线时间
- 2759 小时
- 最后登录
- 2017-9-15
- 注册时间
- 2011-4-3
- 听众数
- 538
- 收听数
- 4
- 能力
- 80 分
- 体力
- 1764 点
- 威望
- 27 点
- 阅读权限
- 150
- 积分
- 5990
- 相册
- 0
- 日志
- 0
- 记录
- 5
- 帖子
- 6675
- 主题
- 3503
- 精华
- 8
- 分享
- 6
- 好友
- 1721
TA的每日心情 | 开心 2017-2-7 15:12 |
|---|
签到天数: 691 天 [LV.9]以坛为家II
群组: 2013年国赛赛前培训 群组: 2014年地区赛数学建模 群组: 数学中国第二期SAS培训 群组: 物联网工程师考试 群组: 2013年美赛优秀论文解 |
# -*- coding=utf-8 -*-
9 g k3 f% R+ q% S+ t/ ?# m0 q1 m* p. x: ?* L
import math
$ |7 n. q" _/ limport sys6 @+ U r D( D( \1 ]
from texttable import Texttable1 B1 x1 y% [( `1 L1 B
6 S- ^! |) \& C# Z# u h, e
/ Y9 U2 }( |# S& h. ]#
# j7 W8 K3 Y- D# 使用 |A&B|/sqrt(|A || B |)计算余弦距离& m; p* o% B+ Q8 {. m
#
8 E* S1 v7 Y, ~#
) J5 i0 R: D2 h ~3 l. Z#; Y6 T9 G4 a; Q/ V) C
def calcCosDistSpe(user1,user2):
" F! V# G1 L9 ?! \& h avg_x=0.0
% }: U" N5 W& s& B7 ~) f avg_y=0.01 ^, B4 L% Y, T0 Q3 _6 _
for key in user1:. c6 z! n3 }: w$ j9 s
avg_x+=key[1]
?6 O! V/ V- e- s avg_x=avg_x/len(user1)7 X% \8 E) V9 {
( n8 J6 r% o6 I3 M/ ~, }
for key in user2:" |+ ^0 i! X- g- O" ?) x( n& W% g7 ^ Z r
avg_y+=key[1]
2 Z8 A- W( f$ ]# u3 ~! r$ X% b avg_y=avg_y/len(user2)
- j; q* Y) W, G5 W8 Z
4 [/ F [' A w4 O% i6 P( ] u1_u2=0.0
4 D& ^' I5 N: o0 T3 l for key1 in user1:& H( ^0 \- Q2 o* I. j$ [$ W
for key2 in user2:
8 R5 Y- h8 L f; C8 {" Z3 k$ U if key1[1] > avg_x and key2[1]>avg_y and key1[0]==key2[0]:' o9 R [3 H% S0 B. w
u1_u2+=18 F6 Q* v5 L2 S ^! Y
u1u2=len(user1)*len(user2)*1.0' p0 z5 n, `. C" u1 J
sx_sy=u1_u2/math.sqrt(u1u2)% @% T4 ?" `- I( o. U3 h! Q
return sx_sy
( N0 R- _3 v2 ^" C& i0 j% R0 T2 ?) @+ F1 W
5 }5 }6 v" } Z+ r( s) F7 V9 m
#
3 U. {% R% p; V8 ]# d. k# 计算余弦距离
4 O- L. \3 A+ W) H2 b) D+ w#
) R8 x% F) Q3 W#
7 _- }& c+ H* Sdef calcCosDist(user1,user2):
0 S8 r& [ E2 m* D sum_x=0.0
: q5 W2 }0 F& [ sum_y=0.0
+ Q/ {! k$ `; @) B% V4 a7 m% M sum_xy=0.0+ ~: G" t! T4 T
for key1 in user1:2 q+ {" r' y4 G5 I) P5 Z
for key2 in user2:
' {1 }2 g' S( Z7 Z! I, S1 z" F if key1[0]==key2[0] :$ J) T$ U" f% _# l9 A
sum_xy+=key1[1]*key2[1], m; U% F0 ]( L o5 c4 z4 H! `3 h+ K
sum_y+=key2[1]*key2[1]
, L. S' W; P9 `( D; |/ ]5 U sum_x+=key1[1]*key1[1]
7 S2 g: T3 N# i3 Z* W) D/ G " ?9 v0 v% K7 z, \2 |. P& j
if sum_xy == 0.0 :
2 i' b& R+ U9 Q+ w1 Q. b- Y return 0* V+ t/ K$ v) S' S, i7 b
sx_sy=math.sqrt(sum_x*sum_y) 0 l" _) N8 J2 m
return sum_xy/sx_sy
4 t: m. A4 Q4 K5 v$ w
! C6 @9 K7 K% \& y/ {' C3 L( y
/ ]. U5 Y7 n' P" R. V#. ?5 `& A7 |# D' Q _7 n+ H
#
1 F2 |! K8 M' T# 相似余弦距离' O2 v- _- \/ r3 O$ E0 K
#9 j$ k" L! U- p1 C3 V7 }# y( A
#
7 n+ K1 O: u; j) G+ K#$ v; S9 r9 W( w" H; `9 [
def calcSimlaryCosDist(user1,user2):7 ~8 Y6 g2 X- P
sum_x=0.0" \2 M" `' H( @- _2 o# |
sum_y=0.0. k1 E" S& u _& o$ B
sum_xy=0.0
! [# L& R2 J H) j l/ D: p avg_x=0.0
: q8 j* q4 k' R: }' o+ J% W9 | avg_y=0.0
2 |& ?- l$ \1 _$ I/ I6 l for key in user1:2 y3 _$ G! l% Y6 B" M0 u4 ~. U
avg_x+=key[1]
) l+ \1 k$ [4 o( F+ m( q3 \ avg_x=avg_x/len(user1) u u# `6 ?2 j$ [
7 `. D b# e$ y
for key in user2:
, o: g( T% K' v( l avg_y+=key[1]- n, k6 |! t# w0 c/ x
avg_y=avg_y/len(user2). S8 Y: d. }3 w0 C9 G- q
0 R: C2 P' ]$ r: ~( N- X( k. R4 M for key1 in user1:
F. k3 k ]& {3 M for key2 in user2:* `, \! x( m4 n* Q3 \
if key1[0]==key2[0] :' ?( T; N% N2 d
sum_xy+=(key1[1]-avg_x)*(key2[1]-avg_y)1 @: t% Z( F' S3 v
sum_y+=(key2[1]-avg_y)*(key2[1]-avg_y)
" C% y% z! V4 K2 n* S sum_x+=(key1[1]-avg_x)*(key1[1]-avg_x)" x% Z8 l+ T) u! H
6 B* H* T3 D7 ?
if sum_xy == 0.0 :
2 h7 k5 w; R8 q. f) k' g+ l/ t return 0
; L* g1 c& n. G! k- k; X5 o sx_sy=math.sqrt(sum_x*sum_y)
! q2 o# `( H& W- Z return sum_xy/sx_sy
8 ?" ?+ x) d: o! K ; Z8 n: Y9 g8 `
' @! q6 A) d7 S$ N& ^- |1 [9 ^( c#
+ d+ ^" o4 ]1 _( j1 n# 读取文件 x0 _" y$ H! p8 Z( D$ S
#
/ ^- j1 p8 _* N% \# W#
! H' {" s! r4 ?3 a/ E) B; Jdef readFile(file_name):" z% d+ S" d: ^3 H2 q4 u
contents_lines=[]
+ Z! j/ G2 \& Q$ `9 ~" V f=open(file_name,"r")( C$ Q! w' V# Z$ J/ s0 G
contents_lines=f.readlines()0 M; `$ ]2 a' i/ u+ F% I
f.close()4 H3 h9 Z. t+ F6 ?6 U; ?
return contents_lines" t' z3 y+ R, U) T7 c1 N
* B! ]) W& r' d2 A V" r
. X) S! I' ?( C8 z$ S$ O/ y x4 w* F* Q7 N
#0 n1 u& W. ^* A& J; Q% _9 n2 j
# 解压rating信息,格式:用户id\t硬盘id\t用户rating\t时间& b/ m0 N1 e S# h4 r. [* F, b/ T
# 输入:数据集合( T* x. A9 i* H$ U# k! V
# 输出:已经解压的排名信息0 R4 p: s- O9 \* o4 P3 m4 g
#
2 K4 P( c; m! {def getRatingInformation(ratings):
2 `6 I3 a# Y. S7 G" D5 @ rates=[] l" j8 m, a4 R/ [5 g: I
for line in ratings:( {' b: O& l! R9 `) j
rate=line.split("\t")
8 ]8 B7 P3 f1 D; q; C1 j, `+ Q rates.append([int(rate[0]),int(rate[1]),int(rate[2])])0 ]7 J( R9 Y5 Q2 h; j6 P
return rates+ X- i3 @# A* W5 M
9 e/ K/ \. C5 B& E5 h
! O" o+ z& Y# {, J. p4 C#6 D$ f+ V8 c- y H6 f
# 生成用户评分的数据结构
3 ~9 Q' U) G! A5 S/ [$ F, m# X2 v#
! j) }% \2 J _; o' O: U$ O. }# 输入:所以数据 [[2,1,5],[2,4,2]...]7 p0 N2 Q1 R; r
# 输出:1.用户打分字典 2.电影字典) L) S/ I3 k+ G; o9 b" {
# 使用字典,key是用户id,value是用户对电影的评价,) W$ f: m' \- u+ ~
# rate_dic[2]=[(1,5),(4,2)].... 表示用户2对电影1的评分是5,对电影4的评分是2+ {) [) M2 `/ I5 J1 M; l: S9 r
#& S3 J9 c/ B5 K. S# X7 Q) @
def createUserRankDic(rates):. ]( g( ^# C0 i" K K, K8 r
user_rate_dic={}
* s# E+ u# [: i+ c, Z3 X4 D item_to_user={}
' a( |6 @; T. ~; G for i in rates:" q9 U2 g, d) i5 S
user_rank=(i[1],i[2])
# b9 S$ p. ~* a if i[0] in user_rate_dic:
+ e* M' R; Z* P: |: _0 b Y- a& | user_rate_dic[i[0]].append(user_rank)* g: O. t* R, A" |
else:
: E; o8 s7 |( S* B, G( }; K user_rate_dic[i[0]]=[user_rank]$ C, o0 o- t2 c4 n! A, |' Y
$ T1 w% v/ x. u1 m, i if i[1] in item_to_user:( ]9 x0 l& ]. J' b0 ]/ ^/ O1 F
item_to_user[i[1]].append(i[0])' K+ O9 p; S& C5 L: k
else:, e+ x2 \/ T# X/ m
item_to_user[i[1]]=[i[0]]
1 a+ H% u+ J1 H% {/ u* R " J2 Q: q, C) A
return user_rate_dic,item_to_user
7 m6 u4 W( a0 a8 ?0 C/ p, y$ B4 g+ f" N r# @7 \* Z4 R w
% H$ j, W1 P7 c4 M: l* N5 M
#
+ f9 t3 [. s- t% n# 计算与指定用户最相近的邻居$ z+ G1 _% o6 a, W3 g, G
# 输入:指定用户ID,所以用户数据,所以物品数据
3 K* j8 u& i3 k9 M0 l0 ]5 \# 输出:与指定用户最相邻的邻居列表
* \9 Q' _; ~- B- i2 ~7 H#& J6 g. U0 L4 J$ N
def calcNearestNeighbor(userid,users_dic,item_dic):' c3 w2 E9 s; U4 J4 b- f- `' n! S
neighbors=[]
- E7 E3 W9 r( d1 @# _; Z #neighbors.append(userid)! ?' Q* {& l9 x9 S' @7 K
for item in users_dic[userid]:
( E# Q; |5 x9 ]0 _" ]7 a for neighbor in item_dic[item[0]]:
' B5 R4 m. d& i* L3 q- u if neighbor != userid and neighbor not in neighbors:
+ v* S& x" r1 B' F. n) O neighbors.append(neighbor)
3 {% B* V- f8 C4 |$ U+ p ( T4 @7 t/ h9 i, F- l
neighbors_dist=[]: }) b7 a {" ^$ {9 H {% Y# W
for neighbor in neighbors:
( e9 G: h5 G, K0 q dist=calcSimlaryCosDist(users_dic[userid],users_dic[neighbor]) #calcSimlaryCosDist calcCosDist calcCosDistSpe
9 b/ k5 F5 M" u( ^- Q- a: k neighbors_dist.append([dist,neighbor])
, r, |, V* I5 T6 W$ O7 J neighbors_dist.sort(reverse=True)
! u8 b( [3 h* p f* |2 ^' Q) V #print neighbors_dist
7 y1 m5 D" C9 K# N" m' H return neighbors_dist6 j; y) K+ r; j" \- a& o; w! t. B+ y( v2 R
3 H7 y) m: |; V9 H/ r
+ S2 M- E0 G5 [& O% x0 W! B6 E' A
#. a4 J8 @5 w0 o. x" o) U7 ~3 b
# 使用UserFC进行推荐+ Q- W2 p1 a& k- r# s$ h! A
# 输入:文件名,用户ID,邻居数量+ s& q& \$ g: F7 e: l- w
# 输出:推荐的电影ID,输入用户的电影列表,电影对应用户的反序表,邻居列表7 A7 F. b1 U+ W! P' R) U
#
4 T) _8 E! i+ k+ e- Hdef recommendByUserFC(file_name,userid,k=5):
9 K* z7 T: I t: K" k
0 M( t& ~& A, [9 a7 y8 i# q+ E2 ? #读取文件数据
' B6 b; n( K( ?& D test_contents=readFile(file_name)
9 l& E0 }) S8 c- {" E! w* z5 n ) ?- y5 g+ L3 l
#文件数据格式化成二维数组 List[[用户id,电影id,电影评分]...]
# c C' A1 Q5 }( [# ~/ c* M) g' j test_rates=getRatingInformation(test_contents)
; D) H4 `2 h; K/ o6 |1 e$ N : s& r3 {( ?! n! F. k
#格式化成字典数据
" e. I4 U, M7 u: a7 q # 1.用户字典:dic[用户id]=[(电影id,电影评分)...]! O' k2 B& F7 j3 B) I" m
# 2.电影字典:dic[电影id]=[用户id1,用户id2...] p, @6 q% S; ]& e5 s
test_dic,test_item_to_user=createUserRankDic(test_rates)% y* z0 ]/ o7 ~& W
; Y( p! M0 ]/ e. [" a2 R2 [# z# q* G #寻找邻居' Q! k. Q$ T- f9 O" |
neighbors=calcNearestNeighbor(userid,test_dic,test_item_to_user)[:k]( @: f) \$ M3 Q
1 p( W% S3 e( ~1 a
recommend_dic={}4 P4 t8 Y3 B) N, Z% Q
for neighbor in neighbors: r2 U- w2 I3 \0 s* b' l# }
neighbor_user_id=neighbor[1]! X0 w; `5 D2 z8 o) f) _% r
movies=test_dic[neighbor_user_id]4 P! m- v2 B h5 V$ f" X
for movie in movies:, G. C& C/ N; M5 m' e& } j4 u! @
#print movie
3 ^! c: Z% \& r7 D7 B+ h4 R! } if movie[0] not in recommend_dic:
) [: C5 h9 m/ S( e9 q recommend_dic[movie[0]]=neighbor[0]. h& Y* x/ E- p m
else:
+ o6 s" E( l7 P6 e recommend_dic[movie[0]]+=neighbor[0]
$ s" k) b, s! Z #print len(recommend_dic)8 i7 n' r r# ^ Y& S1 d
; k7 D% r5 ]' `4 M: [" ?* y( I6 K" z
#建立推荐列表
7 J9 @& }1 r) S9 l recommend_list=[]1 i6 ?! c) ~" u6 }, ^( K8 _$ s
for key in recommend_dic:+ m) \/ m3 ~9 X Q
#print key' ?5 i, H/ H, }! r+ n" q2 z
recommend_list.append([recommend_dic[key],key])
% q j, J" H0 A V* n + L" @. e% B* G/ i9 ^) s' _2 C
5 O( o8 K, |$ A+ [0 p$ I% R
recommend_list.sort(reverse=True)
# y4 e z9 e4 j8 s X, X* K #print recommend_list; c1 m( b8 \9 k
user_movies = [ i[0] for i in test_dic[userid]]
8 }0 k% x! M# e; k4 t4 | ]: L% W5 h
. @0 [4 |( S) N/ J6 ~ return [i[1] for i in recommend_list],user_movies,test_item_to_user,neighbors6 S' w2 M3 D7 L5 ^. W; C; Z& }
& U# C" ^" a# `
4 Q' U$ O) U3 n8 P; W6 ]7 T4 R8 f3 s
3 `% R2 J2 ^( b N' ?% Y#) m% I1 w- y5 @- l
#9 G$ \3 X+ |- r. ~8 N2 A& S& z
# 获取电影的列表
, B# s5 v7 ]1 x+ G: a#
: \8 I* W; S" S#$ e) X" Y( q7 G* o8 C( s
## h' d1 T9 F, c5 @
def getMoviesList(file_name):
% R) s) _- X2 O) C #print sys.getdefaultencoding()! W$ @& B2 P1 D3 D3 i% T
movies_contents=readFile(file_name)
! w/ s7 o/ O+ Z o$ T! e movies_info={}
5 `% F2 U2 V& u0 [: i! k$ V for movie in movies_contents:
& B- @$ t; U( [, |& k9 j6 z% O) Q movie_info=movie.split("|")+ W! k8 o5 @/ R0 j; {! W
movies_info[int(movie_info[0])]=movie_info[1:]
# N8 Q$ B O: Y! a) \/ ^ I return movies_info
0 ?5 E2 W2 J$ H* m% @( |6 t
& f3 `7 q. ^: ~" J5 r6 F
9 n: ]4 w' o( B ~$ c: {. j, H; g
% C' b0 o6 O4 w1 z9 g3 V& d% A#主程序, ~3 M- R6 n: k+ X7 r
#输入 : 测试数据集合5 K6 q. ~9 {9 L! K, B8 q: R
if __name__ == '__main__':
* O! g! y- \% P% n! h reload(sys)- ?0 \5 K% a0 v" Y: N0 ^0 [6 b7 U
sys.setdefaultencoding('utf-8')
7 o1 W9 [+ z1 o8 P# |2 T movies=getMoviesList("/Users/wuyinghao/Downloads/ml-100k/u.item")! J$ {! W! t( p) X, ]0 U
recommend_list,user_movie,items_movie,neighbors=recommendByUserFC("/Users/wuyinghao/Downloads/ml-100k/u.data",179,80)
3 G" K2 s( V! Q4 R. w( S neighbors_id=[ i[1] for i in neighbors]/ Y+ z; c# I0 i% z) n, q' [
table = Texttable()
& A8 f0 c) h- M! m$ N table.set_deco(Texttable.HEADER)8 x0 h W' t( H
table.set_cols_dtype(['t', # text # d. I! P- D, _
't', # float (decimal)
7 C+ ?8 e6 i8 q1 z* \ s O/ P, L 't']) # automatic
: Q. ]. s4 y, z table.set_cols_align(["l", "l", "l"])/ |0 s2 p; T; L1 j0 \; ?
rows=[]1 c7 Z8 ^/ U$ N$ {. H
rows.append([u"movie name",u"release", u"from userid"])
/ M4 ~5 C! l# f0 t5 J for movie_id in recommend_list[:20]:
" z% T) }( Z' ] from_user=[]; H2 @* w) u% b1 j9 v2 E* t1 P
for user_id in items_movie[movie_id]:) @8 E) N2 K$ B, ~9 d3 J
if user_id in neighbors_id:
7 z$ Q0 J/ d7 J j from_user.append(user_id)
$ k# X$ V; J, X5 W' S6 {% M rows.append([movies[movie_id][0],movies[movie_id][1],""])3 \. ?/ d' _1 ^0 g6 L# j
table.add_rows(rows)
0 x/ h3 H- `0 C9 b print table.draw() |
|