- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit/ Y: a* @: I) V' g s. p
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4 `% L; `, ~! e' e' Q8 _ q
% k6->k6 k7->k7
2 F1 G+ b, a, `9 ^: D! D$ |% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);, ?4 Q8 I+ Y2 r8 X
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru); C$ `, }1 C" T
% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
/ r4 d* [- V4 S! E% m" G% @% dLadt = k(7)*C(Hmf);
. r/ g/ `+ U$ K2 Y+ M%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
! }) _; W+ Y6 D1 L% Xclear all* d8 l. \5 ^1 o6 x* f
clc
5 {- C4 D; o* Pformat long
4 A. u6 D9 t: K+ @! u9 d% t/min Glc Fru Fa La HMF/ mol/L 6 r: A/ N& ~1 i# k* C
Kinetics=[0 0.25 0 0 0 0
s/ ~( k3 c4 T" c 15 0.2319 0.01257 0.0048 0 2.50E-04* G% z5 _% Z+ A9 {; v
30 0.19345 0.027 0.00868 0 7.00E-04
, _7 F/ a: y2 Z 45 0.15105 0.06975 0.02473 0 0.0033. g% S$ o' ]3 \! q7 M
60 0.13763 0.07397 0.02615 0 0.00428- c6 ?1 k8 d& Q
90 0.08115 0.07877 0.07485 0 0.01405
, v7 T+ s5 k! ? 120 0.0656 0.07397 0.07885 0.00573 0.02143
3 k% X. `6 h; C& I 180 0.04488 0.0682 0.07135 0.0091 0.03623
: @% \5 Y& v4 T. b 240 0.03653 0.06488 0.08945 0.01828 0.05452% i: e# e# U0 t8 v8 j) x! r8 O
300 0.02738 0.05448 0.09098 0.0227 0.0597; F% d# R8 Y0 ^
360 0.01855 0.04125 0.09363 0.0239 0.06495];
9 w8 g' |. G0 N* Wk0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值" c9 C; \( a0 o/ p U$ ~
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限& Y7 P6 b4 |4 N* ` M# F
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限
5 M# N- _ `: a& f$ B* z% r* @x0 = [0.25 0 0 0 0];
3 D. s$ c1 o: v) ^' l5 P( Oyexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
; m, R& ]2 {9 L# n/ \% warning off
/ X; h1 }% k$ Z$ E% 使用函数 ()进行参数估计
- T$ }& g, k+ K0 {1 N+ J[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);
: K, h$ b2 j Jfprintf('\n使用函数fmincon()估计得到的参数值为:\n')) Z9 [' e/ n& F/ i# m
fprintf('\tk1 = %.11f\n',k(1))
% f/ Z8 Y4 a/ Q* ifprintf('\tk2 = %.11f\n',k(2))% c( N. x9 L: Y4 F& [
fprintf('\tk3 = %.11f\n',k(3))& }6 y1 H/ |, J) k m3 P
fprintf('\tk4 = %.11f\n',k(4))3 K: D8 E# S W" d& ~0 e& k
fprintf('\tk5 = %.11f\n',k(5))1 K; N, L$ E' J. G0 ~
fprintf('\tk6 = %.11f\n',k(6))/ f, e' ^5 D$ G o2 }. D
fprintf('\tk7 = %.11f\n',k(7))* P8 q2 Q3 A: e6 b
fprintf('\tk8 = %.11f\n',k(8))3 @9 ?! O' Y. w; m/ T0 l# q
fprintf('\tk9 = %.11f\n',k(9))# T/ T# F7 B: D0 a- T0 m0 }0 Q
fprintf('\tk10 = %.11f\n',k(10))
5 m: n1 v9 Q- V E, Bfprintf(' The sum of the squares is: %.1e\n\n',fval)
& m9 ]$ T r! K1 A2 K; Z7 C' ?7 Ck_fm= k;
3 O# P" r4 o3 Z% warning off7 Q/ K) F6 s" g& c3 ?/ S
% 使用函数lsqnonlin()进行参数估计
; U5 T+ V4 x7 Y/ @* u/ N[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
; h2 V. X; m) z; E) Z# `' U; H0 ^ lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
+ H; X7 b: v. x: o- \3 tci = nlparci(k,residual,jacobian);+ F" V: o4 u0 H7 u6 v( k
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n'): L& E' a @; w/ n
fprintf('\tk1 = %.11f\n',k(1))
* E- i( q6 o5 b1 B0 I dfprintf('\tk2 = %.11f\n',k(2))
- H9 n5 G6 H, k3 n/ Dfprintf('\tk3 = %.11f\n',k(3))8 J4 V9 l: d! N d/ C3 J2 T" Q$ X' W
fprintf('\tk4 = %.11f\n',k(4)). B9 Z" p5 a& i4 [
fprintf('\tk5 = %.11f\n',k(5))4 A# v: O' ~8 u* y; _
fprintf('\tk6 = %.11f\n',k(6)). t# x* M: U8 R7 U2 Y
fprintf('\tk7 = %.11f\n',k(7))" [" l6 ]! G- v; q3 Z9 x1 B5 x
fprintf('\tk8 = %.11f\n',k(8))) r2 D; O4 f; u' [# W9 n; _( D; w0 g
fprintf('\tk9 = %.11f\n',k(9))( p# C1 O- {4 Z. ~- ]7 U
fprintf('\tk10 = %.11f\n',k(10))
9 E+ i8 |5 ^1 ~) T. `0 G7 A, `. f# Q" Qfprintf(' The sum of the squares is: %.1e\n\n',resnorm)
8 E- ~; C5 V9 ak_ls = k;! Y* S' s5 t D, _) P+ c2 q( x' P
output
* u, l) _, G% x9 ?6 n0 _9 xwarning off3 \. P/ P2 M0 d2 C" R
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计4 d! g# y1 ]: J3 d- I; n+ h
k0 = k_fm;- n) V7 ^: B q" }. K
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
# S; ~$ k1 S5 W: q) T" j: N lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
3 L/ E0 d1 q/ O& K1 r2 R9 Ici = nlparci(k,residual,jacobian);4 t8 d* j4 U# k, E
fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
2 Y# A) k! p) W9 N' ifprintf('\tk1 = %.11f\n',k(1))
9 O) s+ s; D$ R* `& x, lfprintf('\tk2 = %.11f\n',k(2))# F0 ^1 T8 w2 z9 w
fprintf('\tk3 = %.11f\n',k(3))7 A9 ~3 G& A/ |' X9 D3 C
fprintf('\tk4 = %.11f\n',k(4))3 h8 {4 m8 B- W6 r/ _
fprintf('\tk5 = %.11f\n',k(5))
- q; z$ n5 c! C( c& nfprintf('\tk6 = %.11f\n',k(6))+ V0 \3 E" X3 Q: ]! f: t, w8 s
fprintf('\tk7 = %.11f\n',k(7))! I. @) u: b/ M' o
fprintf('\tk8 = %.11f\n',k(8))
6 M' d( a% y+ h- H6 t* I8 mfprintf('\tk9 = %.11f\n',k(9))
: S' }( Z6 K6 k5 ?( Jfprintf('\tk10 = %.11f\n',k(10)): V2 f/ T6 o( P5 |9 y; I
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)' l4 b1 q3 T% Z1 ^% k1 n. v2 c# `0 \
k_fmls = k;
0 T( J. |5 l5 p# E4 E% i, F# ?2 Qoutput
& `. z7 s+ ~& _tspan = [0 15 30 45 60 90 120 180 240 300 360]; g$ A( r- i% H2 L. q" i; @& e* ?# [
[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
) K3 m# F; U5 J( Zfigure;0 s+ L t$ D7 G: y0 ]1 V9 G S
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')0 C7 s( _8 _- Z" m
figure;plot(t,x(:,2:5));6 @* z# _ W) U9 B% N( _0 m+ O& e
p=x(:,1:5)
" }+ Q: B* p5 [: X8 @hold on
) z6 d; D3 g) e8 L; }" ?: j; qplot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
! P. Z+ E `- K' \0 ~
& O; I9 M2 } O$ Q
: s- f: G/ @) O8 p+ C& v z* S" _' b; A5 ]$ g2 t: ] k6 C
function f = ObjFunc7LNL(k,x0,yexp)
% h; q% R" A- ?5 b/ Xtspan = [0 15 30 45 60 90 120 180 240 300 360];
9 p& `9 Z3 t% p$ g; Y$ ?[t, x] = ode45(@KineticEqs,tspan,x0,[],k); i2 E$ R8 k! y# `9 m
y(:,2) = x(:,1);0 T7 H6 y8 X/ ~
y(:,3:6) = x(:,2:5);
+ c, |$ @" s! z! J+ Nf1 = y(:,2) - yexp(:,2);, W/ M" J9 H. n' o: D% l/ ]
f2 = y(:,3) - yexp(:,3);
% u" X9 H7 h+ h5 jf3 = y(:,4) - yexp(:,4);
% F( `1 R" e8 C$ Lf4 = y(:,5) - yexp(:,5);
) t" `0 R2 a5 w4 r* ]# of5 = y(:,6) - yexp(:,6);
# e( U9 i. w- z7 r W$ e$ @f = [f1; f2; f3; f4; f5];. ]7 i. D; |7 k7 q
, g& }+ {+ t5 C4 J! y3 [* B, q/ `' K/ x* C/ s
- T7 R$ V! r4 G7 r" \: q
function f = ObjFunc7Fmincon(k,x0,yexp)1 Q: n- Y- W+ Q( p5 P
tspan = [0 15 30 45 60 90 120 180 240 300 360];
9 E1 n$ Z) q, C* X0 F[t x] = ode45(@KineticEqs,tspan,x0,[],k);
* u: f) m/ N8 n3 m. Dy(:,2) = x(:,1);$ n+ ?7 g* n+ }8 E& s
y(:,3:6) = x(:,2:5);: b" O0 j! Y" A2 b
f = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...+ `: X' P- h* w1 Z- _: n$ ~% }1 s
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...
0 M. G: b" Q/ b+ c0 ^( D + sum((y(:,6)-yexp(:,6)).^2) ;; }2 W/ ~; P3 J% Q7 s) ?
0 K* K1 w2 S9 Q% V
, k8 a' j3 y( E' A& J. Q5 |/ V
: r. n, L; @! a) }. W
/ s3 G5 C: B' g) D$ lfunction dxdt = KineticEqs(t,x,k)
' ?6 X# j6 V' ]dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
! z6 d! O ]# b8 j+ c; ]7 z2 EdFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
, s. f1 Q2 B8 @7 J( D, G2 ~, Z1 pdFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);0 ^5 Y% M, [- Z6 n, z9 v
dLadt = k(7)*x(5);
# w& c7 R% z4 M' RdHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
- U9 l% o/ ]1 B. kdxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
; R* G! N# v+ D: Z% {
6 ^; L5 c% h( O# M! G! S
3 G' G, z' F- t3 l$ M5 M |
zan
|