- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit) p: p% r7 w N3 G) g
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4
5 f) P, m. O% J% k6->k6 k7->k7
4 O1 Z3 c# f0 R. y9 R% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
6 e$ F: t7 W7 l4 M0 r% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
$ z; Y6 K3 u& E4 j2 L+ L2 O% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);( M6 t( U, K5 f" V% W
% dLadt = k(7)*C(Hmf);" {2 a$ J5 ]/ W7 u8 S# P5 I- Z e
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);- j& s9 \* i, O S" ~8 P% w' I! v
clear all
8 u; z1 Y8 G }+ {' |clc
' y% ]6 j( z \format long. A2 H! _7 n8 H" F6 y6 \9 ^
% t/min Glc Fru Fa La HMF/ mol/L
, a' q6 R! ~& b; U! E \ Kinetics=[0 0.25 0 0 0 0
, V9 H Y. l& U \+ a+ O 15 0.2319 0.01257 0.0048 0 2.50E-04
; p5 ~7 T' N9 j3 E; x! R8 D 30 0.19345 0.027 0.00868 0 7.00E-04
3 P3 G$ m% n% V& f0 S9 N1 F3 U 45 0.15105 0.06975 0.02473 0 0.0033
- a( j0 V; u2 I9 i0 [/ |1 g! j+ L3 X 60 0.13763 0.07397 0.02615 0 0.00428% q% C: F1 y$ e0 A) z6 k; Z
90 0.08115 0.07877 0.07485 0 0.01405! @* a- G$ u7 z9 F8 f' O" S R
120 0.0656 0.07397 0.07885 0.00573 0.02143
! K( @0 l5 }$ x0 U& R: G 180 0.04488 0.0682 0.07135 0.0091 0.03623
% G7 C F+ l+ l( ~5 X4 V 240 0.03653 0.06488 0.08945 0.01828 0.05452& r5 M( _/ _8 A1 Y2 O- u
300 0.02738 0.05448 0.09098 0.0227 0.05973 N1 ^1 d* n; i3 {( ]- C
360 0.01855 0.04125 0.09363 0.0239 0.06495];
5 v9 k0 H" K5 ]8 K+ `/ Ek0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值; Z S+ h; ]8 P$ D0 ?3 U1 F
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
$ g9 u( f d: K/ t9 M" Fub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限" |" P$ ~; ]" p
x0 = [0.25 0 0 0 0];
; z$ _# Q+ P1 j# a( `! pyexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]$ f" M* l/ g0 f, a. g2 D
% warning off; n! ]" Z3 t1 g/ P0 A/ }- B1 ~
% 使用函数 ()进行参数估计
. m/ ^, v' d" n[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);% D* W4 j: @* B6 N) ?! U
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')% ^8 ~3 K4 r L2 `# l0 G
fprintf('\tk1 = %.11f\n',k(1))" d! l. q" f0 A7 C+ f3 U) \" c. g
fprintf('\tk2 = %.11f\n',k(2))2 P \ O! a% |8 L9 U
fprintf('\tk3 = %.11f\n',k(3))2 w/ \! I* T7 @! A
fprintf('\tk4 = %.11f\n',k(4))% y) S1 r" w& v/ D4 K+ H _
fprintf('\tk5 = %.11f\n',k(5))
b% d# ?7 ?5 ?2 H Xfprintf('\tk6 = %.11f\n',k(6))4 k, u, j; D" \
fprintf('\tk7 = %.11f\n',k(7))
6 V3 |5 A( Z9 G* h7 l: |$ S0 afprintf('\tk8 = %.11f\n',k(8))( Q/ x" d) j2 K' k* o* _8 y! R6 i
fprintf('\tk9 = %.11f\n',k(9))' |% g2 A. y2 p& E" h
fprintf('\tk10 = %.11f\n',k(10))" Y! T* q" {% j0 `9 L9 u
fprintf(' The sum of the squares is: %.1e\n\n',fval)
5 o$ @) N8 c6 u) ^9 J: v/ xk_fm= k;
2 m: |8 p- M" l3 b% warning off
% f& i. Z0 S, T/ N, O% 使用函数lsqnonlin()进行参数估计0 l6 Y* u9 n/ x* B e! Q
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...1 S/ k4 I c k" X, o( P
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
4 }1 ^- w4 o0 C2 w! Z$ ^3 J6 Nci = nlparci(k,residual,jacobian);! ^; N0 ]( O3 M$ c
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')( P0 p- i }8 p! o- v
fprintf('\tk1 = %.11f\n',k(1))+ ` B8 A9 w0 N% c/ s4 L2 i% j1 z
fprintf('\tk2 = %.11f\n',k(2)); w# t5 c: E9 g( e; }. Z
fprintf('\tk3 = %.11f\n',k(3))
; H, h$ y; g+ S% k. S# Ofprintf('\tk4 = %.11f\n',k(4))
& L" a5 s s- O$ nfprintf('\tk5 = %.11f\n',k(5))/ B/ H1 b0 {4 D; V; F
fprintf('\tk6 = %.11f\n',k(6))% b" z) _! |4 f
fprintf('\tk7 = %.11f\n',k(7)): m8 X/ o, y1 i' u
fprintf('\tk8 = %.11f\n',k(8))
- l3 Z. O: u. F0 C8 Ufprintf('\tk9 = %.11f\n',k(9))
( u: X- R; ?& [9 k6 t1 X; N0 nfprintf('\tk10 = %.11f\n',k(10))
4 Z s9 B3 e' F# M4 b3 rfprintf(' The sum of the squares is: %.1e\n\n',resnorm)
1 O i9 v3 p7 o/ Y' t: a; ek_ls = k;
3 J9 [0 |5 Q' ooutput! l+ _2 n+ z1 \. k5 j; v. G
warning off
, N' X9 s p1 t- Z/ k0 d% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计
8 ?. Z9 C; I. U9 ^+ ]8 {5 k) y( p- Jk0 = k_fm;7 r+ G" p& N) `) b: N7 w# U
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
6 i3 u) z( O) U* @0 a* N! o lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); b& J% R% l& k4 j9 Z; \% o
ci = nlparci(k,residual,jacobian);) D+ v8 j$ O- V% Y$ D
fprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')7 F6 W+ H% l$ h- a* \
fprintf('\tk1 = %.11f\n',k(1))+ W$ V; v3 o$ m ?) a% Y
fprintf('\tk2 = %.11f\n',k(2))
& S( [% z6 `3 j" pfprintf('\tk3 = %.11f\n',k(3))9 Z# O; r( K/ z( T, f! Y
fprintf('\tk4 = %.11f\n',k(4))
$ M2 I- s* A9 J4 f5 Ofprintf('\tk5 = %.11f\n',k(5))+ g U4 L9 k0 h/ d
fprintf('\tk6 = %.11f\n',k(6))
5 D/ V/ q! n4 ]+ U6 H) d) K2 Vfprintf('\tk7 = %.11f\n',k(7))
# Y) F; Q/ s7 ]9 C1 ]) J3 {! |fprintf('\tk8 = %.11f\n',k(8))/ x7 ]* k+ Y; x& V
fprintf('\tk9 = %.11f\n',k(9))
+ O4 S' q. q7 M7 `7 Dfprintf('\tk10 = %.11f\n',k(10))
8 Q9 n$ n3 S cfprintf(' The sum of the squares is: %.1e\n\n',resnorm), R. x% U4 t; _* j( m5 z
k_fmls = k;7 ^$ m* `8 J6 O; x |( [
output& q( T0 {( M. Z1 T; o
tspan = [0 15 30 45 60 90 120 180 240 300 360];
8 y' M7 Q5 {& \! Z6 N! @6 A. O[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
: r$ L. y1 ]: }$ L/ W$ }. S1 A0 bfigure;
9 j( t3 k4 v4 `3 m& e) l9 e( Fplot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')
! F; W/ N5 J' c' B7 ^3 z4 {figure;plot(t,x(:,2:5));7 g3 k m7 W4 h' G' j. d2 W
p=x(:,1:5)
6 @, i" E2 y8 h9 `- rhold on
* }0 I+ Z" S/ F! {( M `0 P1 xplot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
$ k3 K5 ~+ v( X4 ?: O4 j4 \8 v4 \7 [7 U' c
, ^% G! H& F7 H5 P4 W, W/ \4 Q n2 J; |2 Q: M
function f = ObjFunc7LNL(k,x0,yexp)
8 U$ ~, s8 F$ Ttspan = [0 15 30 45 60 90 120 180 240 300 360];" J2 l9 Y9 B. @5 b
[t, x] = ode45(@KineticEqs,tspan,x0,[],k);
7 m0 ?1 I& h5 j! n2 A, A$ |! @. r8 ky(:,2) = x(:,1);
1 ?% t0 e( [ C- A( q) P% I4 H3 Cy(:,3:6) = x(:,2:5); k& V; t7 j$ M( p v
f1 = y(:,2) - yexp(:,2);1 c) H9 s: q) i$ {
f2 = y(:,3) - yexp(:,3);
$ a2 a P5 Y) Y; }8 jf3 = y(:,4) - yexp(:,4);; c& p8 Z$ v8 D# b& b: ]
f4 = y(:,5) - yexp(:,5);: t( `# \1 n" ~1 K$ G
f5 = y(:,6) - yexp(:,6);0 G; f* X8 w, B4 W, O
f = [f1; f2; f3; f4; f5];- M% U; @$ u2 n2 w7 r* t
+ t% ]$ |# i) H: I& C
. t' f% G1 b8 s3 B- N" r) Y6 \! U
6 j3 W8 o( T+ Y# q& ]7 b8 v) Wfunction f = ObjFunc7Fmincon(k,x0,yexp)3 |7 E4 D% p* u( e
tspan = [0 15 30 45 60 90 120 180 240 300 360];
( l2 T, o% e# D# z) J$ B; _[t x] = ode45(@KineticEqs,tspan,x0,[],k); 1 J. \9 m, I( Q; {2 L
y(:,2) = x(:,1);4 e" [: b) K! K% d3 m! H# [8 [: k
y(:,3:6) = x(:,2:5);
% x" Y" J( g/ a+ d8 af = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...
6 a$ h& h# q4 z2 | + sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) .... ?# v6 ]- M+ Y0 o9 z
+ sum((y(:,6)-yexp(:,6)).^2) ;1 Y6 u6 M$ ~" q3 H
8 J# N6 G* p7 ~
/ I1 |& Z( X `" E1 i1 L+ v8 a5 h+ m" P& l. J4 s
5 N( T, R5 g% `7 Y
function dxdt = KineticEqs(t,x,k)
: \1 ?$ B$ L( {/ H8 X: HdGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);( }# b0 U6 m, {! s, q+ G7 U
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);% h# H" o3 Q. D8 W
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);
5 t% N! |1 e1 pdLadt = k(7)*x(5);
6 M; V- j5 Z! m' z+ ^- I* r' z$ MdHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
( `) k/ n4 v# _( {4 h5 [dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
" `, h5 n% Z1 u1 l3 c
' ?' U$ e; L4 H2 F5 L$ K
$ Y# M0 d; k8 W( f) V; u |
zan
|