- 在线时间
- 11 小时
- 最后登录
- 2012-1-13
- 注册时间
- 2011-12-22
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 418 点
- 威望
- 1 点
- 阅读权限
- 30
- 积分
- 204
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 137
- 主题
- 43
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   52% TA的每日心情 | 开心 2012-1-13 11:05 |
|---|
签到天数: 15 天 [LV.4]偶尔看看III
|
本帖最后由 lilianjie 于 2012-1-3 12:07 编辑
* e3 q& n' [+ D4 }
, W( o8 n+ B! Xheyting algebra 海廷代数: } a8 ~/ @+ i( t7 `
( I9 a" a" t6 \) o1 {Virasoro 代数0 I- W9 u$ c% M, \7 t& F5 b5 N
# W8 b. v1 G1 Q. p$ }
n$ b6 O; R- Qcoalgebras or cogebras 余代数 , Y, n% E# J' h0 d* o
余代数是带单位元的结合代数的对偶结构,后者的公理由一系列交换图给出,将这些图中的箭头反转,便得到余代数的公理。
6 D) [' _5 M9 f! y8 H( y# a
! W3 z& |5 Z3 H3 i n余代数的概念可用于李群及群概形等领域中。5 g9 A1 d2 M4 N W: f
9 o9 P0 e+ n. ]
7 d) h; p( X+ X- q1 V1 ]$ d
李余代数' O' Q9 g% t% B( m& }& z
|! `4 Z; @; O0 Z一张学格的表:: ]# q6 {) p/ `" q1 U! q% M
]- t1 V7 d* Q1. A boolean algebra is a complemented distributive lattice. (def)布尔代数是完全分配格
; h. j# _. [" z9 U: q
, t+ T3 g* m. ]/ `2. A boolean algebra is a heyting algebra.[1]布尔代数是一个海廷代数
r4 i. `8 S4 D, Z) Z' r% R3 U" P7 w. U# Y2 J `1 v* r$ u4 t: w: q
1 T" O4 r }) M! W# a7 p3. A boolean algebra is orthocomplemented.[2]布尔代数是正交可补" X: @; m, h2 m( c0 X8 s; S
& I: S% `8 p# `& @2 h: l$ k: C4. A distributive orthocomplemented lattice is orthomodular.[3]分配正交可补格是正交模
$ z* \) m2 q+ [8 w2 L4 w" }8 R" L% M8 G P! ^2 r7 c* N
5. A boolean algebra is orthomodular. (1,3,4)布尔代数是正交模
4 O# V1 N3 k; V( ~3 {1 e7 I3 ^3 @
' e$ W* M$ r4 u. X6. An orthomodular lattice is orthocomplemented. (def)正交模格正交可补
- U9 R" F- Z. _& N1 J0 Q9 V. {- Y$ z1 X s
7. An orthocomplemented lattice is complemented. (def)正交可补格可补, K( o$ r, x+ q. G5 {' X- q7 H
3 p c$ A' Z+ u( j8. A complemented lattice is bounded. (def)可补格有界8 y2 |' h" v4 E+ A# q
4 U8 c P' y/ y1 J9 b9. An algebraic lattice is complete. (def)代数格是完全的
5 w; ?; m7 [( H; E- \) } t
) F3 z4 K1 { U: j10. A complete lattice is bounded.完全格有界0 b8 ^4 ]3 [6 [8 z9 l7 V) I
! e, P- ~6 T( k2 s
11. A heyting algebra is bounded. (def)海廷代数有界3 `- k% n3 B9 \ r$ r
* }; _: o( i& _) A
12. A bounded lattice is a lattice. (def)有界格是格
- C: F4 j# d" K& K1 N+ A
3 ?3 S" M# Y$ B+ Z- j4 \2 Z2 g% N13. A heyting algebra is residuated.海廷代数是剩余的; d+ u9 s8 [( ^4 ]
% y& [$ c) T; z3 @: W6 R( {, p
14. A residuated lattice is a lattice. (def)剩余格是格
' d4 b6 _: u" i, |% g# Z! ]! f
0 f& _- {+ \ {15. A distributive lattice is modular.[4]分配格是模- {& K2 p: }6 f" X U
3 Z7 Y. ^, r: U. U- |% D9 t6 h16. A modular complemented lattice is relatively complemented.[5]模可补格相关可补) n. @+ R/ Q2 [/ c' ~ O
* y4 D+ i! x+ s# a$ f
17. A boolean algebra is relatively complemented. (1,15,16)布尔代数相关可补
' {+ x# r9 ~. g2 h: }+ i. C3 P: X/ z* ]+ b8 X# e. W6 {/ q9 a
18. A relatively complemented lattice is a lattice. (def)相关可补格是格# M+ ]# a& A! W$ K. ^! d% L+ \
1 v3 S& G5 {7 }: \% B: Y19. A heyting algebra is distributive.[6]海廷代数可分配) N4 ?2 Y) z9 d" l5 |
. ^$ _, J2 [! [6 a- M3 c; p
20. A totally ordered set is a distributive lattice.全序集是分配格
0 k) V0 h: g" V% n- g4 G
8 s2 X# ]! Y. A8 c21. A metric lattice is modular.[7]度量格是模% e! R# l7 O+ c* |5 b
5 k9 M3 B4 ?+ Q5 Y$ ?
22. A modular lattice is semi-modular.[8]模格是半模 `2 c8 Y3 q; J g( Y( W
8 f. m; r3 f5 v% Y3 A% b+ q
23. A projective lattice is modular.[9]防射格是模. ]3 z7 d1 K* E) W4 D! o
) c4 s9 t) R3 E" X1 S; h24. A projective lattice is geometric. (def)防射格可几何度量
* J/ O1 n/ J. b6 U. M
4 `8 {2 R4 y+ |; b6 c25. A geometric lattice is semi-modular.[10]几何度量格是半模
6 ~. c+ y. e0 T6 H% w0 n/ _- ~4 x5 `& [) F
26. A semi-modular lattice is atomic.[11]半模格是原子格! @6 a/ J2 R& h
# `5 v$ v" {2 c* s! x$ y27. An atomic lattice is a lattice. (def)原子格是格
: _8 @: u0 Z8 v) \) ~# f1 |. U. Q# Q& @$ j4 k
28. A lattice is a semi-lattice. (def)格是半格
7 h& B, t) C% m
! `3 v1 T" ^6 z! y29. A semi-lattice is a partially ordered set. (def)半格是偏序集
( }6 k# h" D2 m( n
0 }, O' M: u- c! L4 S- Z+ m |
|