- 在线时间
- 11 小时
- 最后登录
- 2012-1-13
- 注册时间
- 2011-12-22
- 听众数
- 4
- 收听数
- 0
- 能力
- 0 分
- 体力
- 418 点
- 威望
- 1 点
- 阅读权限
- 30
- 积分
- 204
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 137
- 主题
- 43
- 精华
- 0
- 分享
- 0
- 好友
- 0
升级   52% TA的每日心情 | 开心 2012-1-13 11:05 |
---|
签到天数: 15 天 [LV.4]偶尔看看III
|
本帖最后由 lilianjie 于 2012-1-3 12:07 编辑
* `& D) S3 l- D5 G0 y: q' h D4 V! U* @7 h4 b @, d
heyting algebra 海廷代数
) V3 `8 L. A% o/ p5 V/ q7 W4 Y2 y! U& ~
Virasoro 代数
q0 I# y+ P2 g: c8 L {6 f b! l% V4 P8 c
5 c$ F1 R9 R+ g+ Y, p1 u% w- S8 X
coalgebras or cogebras 余代数 % D+ V) o6 ]$ P6 H9 _1 `1 [
余代数是带单位元的结合代数的对偶结构,后者的公理由一系列交换图给出,将这些图中的箭头反转,便得到余代数的公理。
8 x8 `5 |( n J" D- a# Q# F9 U( S! W; Z" F+ R3 a% J0 @
余代数的概念可用于李群及群概形等领域中。
4 v) R* z4 p8 N# n+ y. b/ t$ S$ \4 M: a
/ C( x) g! u5 T) K李余代数& H# V% H! i! `0 F6 }( l
4 I0 p0 x. c6 E. g9 Q- R3 ?, S
一张学格的表:
0 w5 P+ s# `% O8 J
; `# s$ U& y5 A4 k- w- r1. A boolean algebra is a complemented distributive lattice. (def)布尔代数是完全分配格
0 V1 s; b9 `; N8 k" x3 j- K5 S6 `$ {' `4 e& M' i7 J0 y
2. A boolean algebra is a heyting algebra.[1]布尔代数是一个海廷代数
$ C* a7 D- u1 k. x, w
# G N3 G9 G6 Y+ d! r- T" H' ?7 S: `9 [' Z* a* `' q
3. A boolean algebra is orthocomplemented.[2]布尔代数是正交可补
" B8 r3 W9 D3 {$ I# C' U. ~/ ^3 x2 {$ P1 d
4. A distributive orthocomplemented lattice is orthomodular.[3]分配正交可补格是正交模9 {; }7 d7 ]% A/ c0 `
* q- |, J7 Z2 f
5. A boolean algebra is orthomodular. (1,3,4)布尔代数是正交模
* n0 M) Z9 W4 S$ B: ]! _9 q R% e$ i6 `5 H3 _( q+ [
5 B/ ^& F) U6 ~& O
6. An orthomodular lattice is orthocomplemented. (def)正交模格正交可补
' }3 W n8 d0 Q; b% |# W5 P6 p- D( s; I3 e; G3 ?
7. An orthocomplemented lattice is complemented. (def)正交可补格可补* D* V+ |* F0 T! W
* W& {! ~- {% p# |8. A complemented lattice is bounded. (def)可补格有界
! }6 {2 t7 B$ O' z% y+ n1 q8 w [: M4 l {2 W. e1 r0 D+ x* B4 S2 d @
9. An algebraic lattice is complete. (def)代数格是完全的% O3 o( q9 J- k5 l& d
' g% x# e$ q4 S6 R& f8 n
10. A complete lattice is bounded.完全格有界% O; d+ n2 }' i }% Z/ c
8 u2 l i! C& H3 R11. A heyting algebra is bounded. (def)海廷代数有界
, C+ \1 e# {1 m% u* y4 o+ s/ {4 ]. |# ~1 `' |% i/ z$ L- S
12. A bounded lattice is a lattice. (def)有界格是格* `& Y: K5 l0 _/ ^ `! @" m5 K
% X; P& {: T; Q. v' r13. A heyting algebra is residuated.海廷代数是剩余的
4 ]9 u( R$ k! U# W! S- ~/ u/ Y$ [
_1 t9 m7 e- o# N14. A residuated lattice is a lattice. (def)剩余格是格5 _$ E" Q( X+ d v/ {# |: W: l- _
6 O3 {2 y& \& n- Q5 }& n
15. A distributive lattice is modular.[4]分配格是模
/ K3 {4 `$ ?% o: c& t/ E9 f. J5 W$ I5 X3 U8 ~7 w/ S+ O
16. A modular complemented lattice is relatively complemented.[5]模可补格相关可补
: Z- S6 Q, C1 Q5 @3 C( } ?+ D& ]1 M' U2 Q3 ^+ @8 f
17. A boolean algebra is relatively complemented. (1,15,16)布尔代数相关可补5 a: c0 b. r& d, W% F
4 t3 N- l: M4 S, U G* |3 d, o18. A relatively complemented lattice is a lattice. (def)相关可补格是格
' L* D2 d- l2 n5 E/ e4 `. O
0 b# W7 i5 F0 S0 ~19. A heyting algebra is distributive.[6]海廷代数可分配, Q' |1 @( x* l; S1 `* d8 _0 Z
) p- u. `4 j% N7 c. B0 o3 S20. A totally ordered set is a distributive lattice.全序集是分配格( ^, o5 ~6 n5 q
7 Z B, ^3 B9 J/ w+ o21. A metric lattice is modular.[7]度量格是模
6 A! G6 S+ s5 {% i' I3 f& W$ a4 |7 E
! ^6 O/ `7 N% ^: ]* O5 R22. A modular lattice is semi-modular.[8]模格是半模
" D+ n: J/ W+ M3 @/ n: A) Y) F- A* v" ~
23. A projective lattice is modular.[9]防射格是模0 a F1 F9 t( L# ^ ^& R6 F
7 k6 ~' I$ f3 T1 D6 v' {3 ]
24. A projective lattice is geometric. (def)防射格可几何度量
2 b' b) D" a9 W) V( G+ |2 A8 e4 e, P' V( l7 B
25. A geometric lattice is semi-modular.[10]几何度量格是半模1 H$ c6 S2 W* L% K
+ ~& b2 C; ^; H5 Z* R- s; w
26. A semi-modular lattice is atomic.[11]半模格是原子格
: F, X* Z6 J1 s( q' K. U4 ?6 h
5 ?* f; q# _& s$ L& E27. An atomic lattice is a lattice. (def)原子格是格5 z7 P' ~' q# X; J% G
0 Y* N0 P, s0 ^. e& G0 R3 _
28. A lattice is a semi-lattice. (def)格是半格( U$ T1 p) s4 Z# d: B
7 y2 {3 R2 V8 K, C8 w6 A
29. A semi-lattice is a partially ordered set. (def)半格是偏序集" v+ ?7 x3 T( S1 p# a) R
, G. c: k, L1 K4 W' {% m |
|