QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 1646|回复: 0
打印 上一主题 下一主题

[建模教程] 模拟退火算法

[复制链接]
字体大小: 正常 放大

16

主题

13

听众

224

积分

升级  62%

  • TA的每日心情
    开心
    2015-1-3 20:49
  • 签到天数: 54 天

    [LV.5]常住居民I

    群组国赛讨论

    跳转到指定楼层
    1#
    发表于 2014-8-21 23:45 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    [p=272, null, left]模拟退火算法

    # {0 _2 l2 Y9 I+ z+ ]

    & c2 E. j' p, z+ w3 K7 g! R) x; Q/ X" ~
    8 L  x# {  s0 v$ {: w[p=197, null, left]模拟退火算法来源于固体退火原理,

    [p=197, null, left]将固体加温至充

    [p=197, null, left]分高,再让其徐徐冷却,加温时,固体内部粒子随温升变

    [p=197, null, left]为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每

    [p=197, null, left]个温度都达到平衡态,最后在常温时达到基态,内能减为

    [p=197, null, left]最小。根据

    [p=197, null, left][size=197px]Metropolis

    [p=197, null, left]准则,粒子在温度

    [p=197, null, left][size=197px]T

    [p=197, null, left]时趋于平衡

    [p=197, null, left]的概率为

    [p=197, null, left][size=197px]e-

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]E/(kT)

    [p=197, null, left],其中

    [p=197, null, left][size=197px]E

    [p=197, null, left]为温度

    [p=197, null, left][size=197px]T

    [p=197, null, left]时的内能,

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]E

    [p=197, null, left]

    [p=197, null, left]其改变量,

    [p=197, null, left][size=197px]k

    [p=197, null, left]

    [p=197, null, left][size=197px]Boltzmann

    [p=197, null, left]常数。用固体退火模拟组合优

    [p=197, null, left]化问题,将内能

    [p=197, null, left][size=197px]E

    [p=197, null, left]模拟为目标函数值

    [p=197, null, left][size=197px]f

    [p=197, null, left],温度

    [p=197, null, left][size=197px]T

    [p=197, null, left]演化成控

    [p=197, null, left]制参数

    [p=197, null, left][size=197px]t

    [p=197, null, left],即得到解组合优化问题的模拟退火算法:由初

    [p=197, null, left]始解

    [p=197, null, left][size=197px]i

    [p=197, null, left]和控制参数初值

    [p=197, null, left][size=197px]t

    [p=197, null, left]开始,

    [p=197, null, left]对当前解重复

    [p=197, null, left][size=197px]“

    [p=197, null, left]产生新解

    [p=197, null, left][size=197px]→

    [p=197, null, left]计算目标函数差

    [p=197, null, left][size=197px]→

    [p=197, null, left]接受或舍弃

    [p=197, null, left][size=197px]”

    [p=197, null, left]的迭代,并逐步衰减

    [p=197, null, left][size=197px]t

    [p=197, null, left]值,

    [p=197, null, left]算法终止时的当前解即为所得近似最优解,

    [p=197, null, left]这是基于蒙特

    [p=197, null, left]卡罗迭代求解法的一种启发式随机搜索过程。

    [p=197, null, left]退火过程由

    [p=197, null, left]冷却进度表

    [p=197, null, left][size=197px](Cooling Schedule)

    [p=197, null, left]控制,包括控制参数的初

    [p=197, null, left]

    [p=197, null, left][size=197px]t

    [p=197, null, left]及其衰减因子

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left]、每个

    [p=197, null, left][size=197px]t

    [p=197, null, left]值时的迭代次数

    [p=197, null, left][size=197px]L

    [p=197, null, left]和停止条

    [p=197, null, left]

    [p=197, null, left][size=197px]S

    [p=197, null, left]


    % L9 b: W) E; g$ s! e* g& B
    " M+ ^0 r7 N8 K8 _- p0 Q
    8 B8 R# t' A! v1 u" p[p=197, null, left]模拟退火算法可以分解为解空间、

    [p=197, null, left]目标函数和初始解

    [p=197, null, left]三部分。

    2 `, j& C4 b. ^" Y. }1 X

    9 r7 h( G  M! N( r# B/ }- r0 R( p/ m) D6 [0 n. A
    [p=197, null, left]模拟退火的基本思想

    [p=197, null, left][size=197px]:

    + O. e' Y, M6 h) ~9 R
    + q  `& U9 ]4 a
    [p=197, null, left][size=197px](1)

    [p=197, null, left]初始化:初始温度

    [p=197, null, left][size=197px]T(

    [p=197, null, left]充分大

    [p=197, null, left][size=197px])

    [p=197, null, left],初始解状态

    [p=197, null, left][size=197px]S(

    [p=197, null, left]

    [p=197, null, left]算法迭代的起点

    [p=197, null, left][size=197px])

    [p=197, null, left]

    9 u) h; F; `0 Q! T. g
    [p=197, null, left]每个

    [p=197, null, left][size=197px]T

    [p=197, null, left]值的迭代次数

    [p=197, null, left][size=197px]L


    8 T$ p& \0 X" u/ v. n) Y' u" }7 r9 ^. u4 J% c

    ; [( V6 j% y) g' E7 y
    : z) \  c( i* E) P. P0 f& D% O9 e& @1 j$ h) w, }9 ]. O& F( |
    2 v" f* X1 `( Z  O
    0 ~% _; E, J$ U

    + u. ~2 U( `& L1 Q& F; d: k2014全国一级建造师资格考试备考资料真题集锦建筑工程经济 建筑工程项目管理 建筑工程法规 专业工程管理与实务1 k$ ?4 s/ V8 j

    0 p! M8 u1 k+ D3 M4 R
    7 i/ j- V/ ]  J" e# s

    / q- k) }2 E6 x4 f
    + {# @4 k1 F. ^# g
      b# W, N0 b/ ?! s/ E4 m! R& k) L; e
    & M+ @" q6 u) e  Y5 R9 f
    $ Q8 i+ }% m* f) a% o6 r' v[p=197, null, left][size=197px](2)

    [p=197, null, left][size=197px]对

    [p=197, null, left][size=197px]k=1

    [p=197, null, left][size=197px],

    [p=197, null, left][size=197px]……

    [p=197, null, left][size=197px],

    [p=197, null, left][size=197px]L

    [p=197, null, left][size=197px]做第

    [p=197, null, left][size=197px](3)

    [p=197, null, left][size=197px]至第

    [p=197, null, left][size=197px]6

    [p=197, null, left][size=197px]步:


    1 n" B4 K+ z. o
    , W. |2 j4 m8 Q( V/ ^
    $ p; B, q1 i8 d, j# a$ P[p=197, null, left][size=197px](3)

    [p=197, null, left][size=197px]产生新解

    [p=197, null, left][size=197px]S

    [p=197, null, left][size=197px]′

    - |  W: Y, t8 p8 V7 f  n
    # a1 D! N1 T% [
    . A: E. l/ _  P! Y$ M6 u, e4 X% U
    [p=197, null, left][size=197px](4)

    [p=197, null, left][size=197px]计算增量

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]=C(S

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px])-C(S)

    [p=197, null, left][size=197px],其中

    [p=197, null, left][size=197px]C(S)

    [p=197, null, left][size=197px]为评价函数


    4 f1 A1 n# O& O7 y% B) A
    , |9 O6 P) ?3 n" [" Y, q7 B: _& U
    , D- w; r5 H# u/ c% T- [7 S4 Q, K- U[p=197, null, left][size=197px](5)

    [p=197, null, left][size=197px]若

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]<0

    [p=197, null, left][size=197px]则接受

    [p=197, null, left][size=197px]S

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]作为新的当前解,否则以概率

    [p=210, null, left][size=197px]exp(-

    [p=210, null, left][size=197px]Δ

    [p=210, null, left][size=197px]t

    [p=210, null, left][size=197px]′

    [p=210, null, left][size=197px]/T)

    [p=210, null, left][size=197px]接受

    [p=210, null, left][size=197px]S

    [p=210, null, left][size=197px]′

    [p=210, null, left][size=197px]作为新的当前解

    [p=210, null, left][size=197px].

    . U( F/ N( l" d
    ; L; S" ?7 O" E6 L/ {8 ~
    [p=197, null, left][size=197px](6)

    [p=197, null, left][size=197px]如果满足终止条件则输出当前解作为最优解,结

    [p=197, null, left][size=197px]束程序。


    8 K: P/ f) @; ]; h) [( h% p: X) x: o. d
      @7 Y" I3 \- Q) J: U
    [p=197, null, left][size=197px]终止条件通常取为连续若干个新解都没有被接受时

    [p=197, null, left][size=197px]终止算法。

    : [" l" P1 |& E4 R- T! _% W

    ! t7 G& `/ ]! t$ @/ r+ U
    # b/ q' M) k3 V" E& P' [2 m4 O$ z% k[p=197, null, left][size=197px](7) T

    [p=197, null, left][size=197px]逐渐减少,且

    [p=197, null, left][size=197px]T->0

    [p=197, null, left][size=197px],然后转第

    [p=197, null, left][size=197px]2

    [p=197, null, left][size=197px]步。


    ; W5 E4 O- C9 r2 A" M4 K. i4 R7 u: P* e$ b& E; R

    ' W9 L2 u, l6 f) T/ f[p=197, null, left][size=197px]模拟退火算法新解的产生和接受可分为如下四个步

    [p=197, null, left][size=197px]骤:


    5 y2 U: K! v8 i3 M3 H
    - j) \) Z& n. G
    ) M( Q( J$ O$ Z[p=197, null, left][size=197px]第一步是由一个产生函数从当前解产生一个位于解

    [p=197, null, left][size=197px]空间的新解;为便于后续的计算和接受,减少算法耗时,

    [p=197, null, left][size=197px]通常选择由当前新解经过简单地变换即可产生新解的方

    [p=197, null, left][size=197px]法,如对构成新解的全部或部分元素进行置换、互换等,

    [p=197, null, left][size=197px]注意到产生新解的变换方法决定了当前新解的邻域结构,

    [p=197, null, left][size=197px]因而对冷却进度表的选取有一定的影响。

    6 V# Z! [+ |# O, h* Z8 v
    & E) y; E0 g1 M# n& p0 I
    5 w7 O) L5 a9 q8 ~. l# W
    [p=197, null, left][size=197px]第二步是计算与新解所对应的目标函数差。

    [p=197, null, left][size=197px]因为目标

    [p=197, null, left][size=197px]函数差仅由变换部分产生,

    [p=197, null, left][size=197px]所以目标函数差的计算最好按

    [p=197, null, left][size=197px]增量计算。事实表明,对大多数应用而言,这是计算目标

    [p=197, null, left][size=197px]函数差的最快方法。

    8 l% ]3 N" W$ g! h
    ! g4 N3 O/ z3 U

    + N7 s) E  H3 d( U5 o6 i& V
    & x8 b- y4 n& C0 q0 U! X+ t, W% ~$ N  A7 Z6 Y. K' x, o5 L& k7 E
    8 f1 Y" O5 _0 s1 Y9 S$ U7 i' ?

    , m; {/ }- J- V  ^! Y: k! E4 y1 u! s$ N/ s+ M1 E

    7 M7 p! i2 ^  z( f; `  S6 G. y! {* k
    4 e9 L) I) k. a* O; R* B1 [, `4 d

    $ h+ v5 I4 w6 W5 C6 Z9 H" p( b2 q( }& D) U, V0 J" w1 m; U+ B, M
    9 \" D' a4 T+ Q* {+ s- n- }
    [p=197, null, left][size=197px]第三步是判断新解是否被接受

    [p=197, null, left][size=197px],

    [p=197, null, left][size=197px]判断的依据是一个接

    [p=197, null, left][size=197px]受准则,最常用的接受准则是

    [p=197, null, left][size=197px]Metropo1is

    [p=197, null, left][size=197px]准则

    [p=197, null, left][size=197px]:

    [p=197, null, left][size=197px]若

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]<0

    [p=197, null, left][size=197px]则接受

    [p=197, null, left][size=197px]S

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]作为新的当前解

    [p=197, null, left][size=197px]S

    [p=197, null, left][size=197px],

    [p=197, null, left][size=197px]否则以概率

    [p=197, null, left][size=197px]exp(-

    [p=197, null, left][size=197px]Δ

    [p=197, null, left][size=197px]t

    [p=197, null, left][size=197px]′

    [p=197, null, left][size=197px]/T)

    [p=197, null, left][size=197px]接受

    [p=210, null, left][size=197px]S

    [p=210, null, left][size=197px]′

    [p=210, null, left][size=197px]作为新的当前解

    [p=210, null, left][size=197px]S

    [p=210, null, left][size=197px]。

    & I1 T2 S! m) o# w2 ^' A

    ) N' Q) J1 {) ?: s1 x! d1 P2 [( Y& c4 ]8 j" d' w
    [p=197, null, left][size=197px]第四步是当新解被确定接受时,用新解代替当前解,

    [p=197, null, left][size=197px]这只需将当前解中对应于产生新解时的变换部分予以实

    [p=197, null, left][size=197px]现,同时修正目标函数值即可。此时,当前解实现了一次

    [p=197, null, left][size=197px]迭代。可在此基础上开始下一轮试验。而当新解被判定为

    [p=197, null, left][size=197px]舍弃时,则在原当前解的基础上继续下一轮试验。


    , b8 l+ I" n7 R5 T" |  M2 _9 E6 m1 s( |) t6 m7 A* H7 P

    / k7 a; L$ a! F2 }: w5 \3 Z: J[p=197, null, left][size=197px]模拟退火算法与初始值无关,

    [p=197, null, left][size=197px]算法求得的解与初始解

    [p=197, null, left][size=197px]状态

    [p=197, null, left][size=197px]S(

    [p=197, null, left][size=197px]是算法迭代的起点

    [p=197, null, left][size=197px])

    [p=197, null, left][size=197px]无关;模拟退火算法具有渐近

    [p=197, null, left][size=197px]收敛性,

    [p=197, null, left][size=197px]已在理论上被证明是一种以概率

    [p=197, null, left][size=197px]l

    [p=197, null, left][size=197px]收敛于全局最

    [p=197, null, left][size=197px]优解的全局优化算法;模拟退火算法具有并行性

    ; ^! \9 R1 i" V3 V
    2 U9 u. `! o' K' Q0 F; x6 @
    % G: s" \: w2 o, X) ~
    / r6 ^! R; K; z9 D; B: e

    0 y' ]0 u; C: L+ G( M& l: x; z, Q( B% Y4 o. f# |

    - o. X, O  K1 Y/ X2 E2 }  F
    . w: _# ?2 V/ @$ U: {+ G+ o+ j. \. r' \+ Y! N) {
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-8-28 16:06 , Processed in 0.623405 second(s), 48 queries .

    回顶部