QQ登录

只需要一步,快速开始

 注册地址  找回密码
查看: 3168|回复: 0
打印 上一主题 下一主题

莫比乌斯带

[复制链接]
字体大小: 正常 放大
彭小玉 实名认证       

19

主题

8

听众

572

积分

  • TA的每日心情
    奋斗
    2014-11-17 17:39
  • 签到天数: 146 天

    [LV.7]常住居民III

    群组数学建模培训课堂1

    群组华南理工大学

    群组第三届数模基础实训

    群组数模思想方法大全

    群组第一期sas基础实训课堂

    跳转到指定楼层
    1#
    发表于 2014-10-11 21:16 |只看该作者 |倒序浏览
    |招呼Ta 关注Ta
    本帖最后由 彭小玉 于 2014-10-11 21:29 编辑 : L4 y. J. a* h9 X* u
    9 X8 O4 M' S. K; V( u5 }0 ~
    公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”。3 K. \6 }! |. ]$ A4 L9 A
    拿一张白的长纸条,把一面涂成黑色,然后把其中一端翻一个身,粘成一个莫比乌斯带。用剪刀沿纸带的中央把它剪开。纸带不仅没有一分为二,反而剪出一个两倍长的纸圈。8 V' r5 ]# w) Z: ^
    . V( Y) R; S8 y
    新得到的这个较长的纸圈,本身却是一个双侧曲面,它的两条边界自身虽不打结,但却相互套在一起。把上述纸圈,再一次沿中线剪开,这回可真的一分为二了,得到的是两条互相套着的纸圈,而原先的两条边界,则分别包含于两条纸圈之中,只是每条纸圈本身并不打结罢了。' H: \# s6 P7 o( {% @1 l/ w

    9 i3 ^. F0 V+ g莫比乌斯带还有更为奇异的特性。一些在平面上无法解决的问题,却不可思议地在莫比乌斯带上获得了解决。
    - R6 g+ u* p/ L$ Y3 Z) G/ k7 @4 t. x0 t1 P' x( A
    比如在普通空间无法实现的"手套易位"问题:人左右两手的手套虽然极为相像,但却有着本质的不同。我们不可能把左手的手套贴切地戴到右手上去;也不能把右手的手套贴切地戴到左手上来。无论你怎么扭来转去,左手套永远是左手套,右手套也永远是右手套!不过,倘若你把它搬到莫比乌斯带上来,那么解决起来就易如反掌了。
    3 }7 n5 N( @4 F" m% k- M
    ) g! ~, s5 x' A5 k在自然界有许多物体也类似于手套那样,它们本身具备完全相像的对称部分,但一个是左手系的,另一个是右手系的,它们之间有着极大的不同。这个方程组可以创造一个边长为1半径为1的莫比乌斯带,所处位置为x-y面,中心为(0,0,0)。参数u在v从一个边移动到另一边的时候环绕整个带子。$ |! ]7 E1 @( o5 y' h: P- z
    , l* A% ^4 K0 C$ @
    从拓扑学上来讲,莫比乌斯带可以定义为矩阵[0,1]×[0,1],边由在0≤x≤1的时候(x,0)~(1-x,1)决定。
    6 O& O! T, U0 V# ?  }* L/ z2 `; K' n4 E) G+ f1 J( X: P
    莫比乌斯带是一个二维的紧致流形(即一个有边界的面),可以嵌入到三维或更高维的流形中。它是一个不可定向的的标准范例,可以看作RP#RP。同时也是数学上描绘纤维丛的例子之一。特别地,它是一个有一纤维单位区间,I= [0,1]的圆S上的非平凡丛。仅从莫比乌斯带的边缘看去给出S上一个非平凡的两个点(或Z2)的从。
    & ~/ n7 |; Y  x. ]4 J% L; h
    1 [/ U5 D3 A. o* i! h“莫比乌斯带”在生活和生产中已经有了一些用途。例如,用皮带传送的动力机械的皮带就可以做成“莫比乌斯带”状,这样皮带可以磨损的面积就变大了。如果把录音机的磁带做成“莫比乌斯带”状,就不存在正反两面的问题了,磁带就只有一个面了。它还能平坦的嵌入四维空间  j- l: [% p) i& b
    : ~* v" _9 G1 O$ h7 {+ D7 S
    莫比乌斯带是一种拓展图形,它们在图形被弯曲、拉大、缩小或任意的变形下保持不变,只要在变形过程中不使原来不同的点重合为同一个点,又不产生新点。换句话说,这种变换的条件是:在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点。这样的变换叫做拓扑变换。拓扑有一个形象说法——橡皮几何学。因为如果图形都是用橡皮做成的,就能把许多图形进行拓扑变换。例如一个橡皮圈能变形成一个圆圈或一个方圈。但是一个橡皮圈不能由拓扑变换成为一个阿拉伯数字8。因为不把圈上的两个点重合在一起,圈就不会变成8,“莫比乌斯带”正好满足了上述要求。, F& I, v- m" J) I& n  \4 Z9 d
      C7 V- s$ V1 B6 D* g. c

    7 ^' v" T7 B2 I0 s【转】
    zan
    转播转播0 分享淘帖0 分享分享0 收藏收藏0 支持支持0 反对反对0 微信微信
    您需要登录后才可以回帖 登录 | 注册地址

    qq
    收缩
    • 电话咨询

    • 04714969085
    fastpost

    关于我们| 联系我们| 诚征英才| 对外合作| 产品服务| QQ

    手机版|Archiver| |繁體中文 手机客户端  

    蒙公网安备 15010502000194号

    Powered by Discuz! X2.5   © 2001-2013 数学建模网-数学中国 ( 蒙ICP备14002410号-3 蒙BBS备-0002号 )     论坛法律顾问:王兆丰

    GMT+8, 2025-6-18 06:28 , Processed in 0.503270 second(s), 51 queries .

    回顶部