原版英文书 第二版
( D5 d. d+ v* S. n' w2 J& Ocontents:
7 f& z: `* L/ b+ X5 e$ a- D9 I$ HPreface to the first edition page viii
# T6 p1 h4 @3 a9 pPreface to the second edition xi
# K$ f, `, l2 v0 S9 B7 ~' U1 Introduction 1
7 A$ H | N& p1 S8 ?5 i2 Parabolic equations in one space variable 7! p( C/ Z1 X6 Z* N: u
2.1 Introduction 7
" [; O$ f8 M# L& a( v2.2 A model problem 7/ q* k3 h+ G+ b5 G1 ^. s0 J1 i* _
2.3 Series approximation 99 F u' i/ R8 F( G! l% x' \0 p+ @4 H
2.4 An explicit scheme for the model problem 101 M' y8 W9 J/ x$ |1 e
2.5 Difference notation and truncation error 12
" ~( P" G7 C4 B+ l! R9 ?$ J9 s2 R1 X2.6 Convergence of the explicit scheme 16
h/ O8 ~. I+ g% R* ^# v( Y5 O2.7 Fourier analysis of the error 19
* r# c( O/ }3 n0 ~8 |9 W! r' \2 C: w2.8 An implicit method 22
) T( ^. V" D! j, y( J# Q2.9 The Thomas algorithm 24
+ e, u2 Q4 j1 q3 w2.10 The weighted average or θ-method 26
( L# T: n1 V( Z4 w! b6 B2.11 A maximum principle and convergence
9 c% V: a0 I* F! K) xfor μ(1−θ)≤ 1; u3 w9 J* t3 K7 l9 b
2 33( }6 `( F$ y- j
2.12 A three-time-level scheme 38% i6 q4 ^+ r- Z0 u3 z, w
2.13 More general boundary conditions 395 e8 n& Z: w M1 E9 t5 `3 F# q. F
2.14 Heat conservation properties 448 l1 F H7 @& v
2.15 More general linear problems 46
4 J7 Z0 c- z% {; h. q2.16 Polar co-ordinates 52& K" e5 w* } W1 Q* H* N
2.17 Nonlinear problems 542 H O2 U. F. u. D( f* Q
Bibliographic notes 56
7 }; R# z2 E: R2 s; MExercises 56% E$ X; }. v; c8 o0 e; |
v
5 t& |4 m0 D1 P N: w+ I8 W0 J6 fvi Contents
7 @& S5 T( N6 S0 }( B3 2-D and 3-D parabolic equations 62
6 z/ { T* L( z5 N& k3.1 The explicit method in a rectilinear box 62
5 V6 e- K+ U1 n' L8 w3.2 An ADI method in two dimensions 64 M- U" K1 `- s# b. v
3.3 ADI and LOD methods in three dimensions 701 g5 G3 s) [2 K/ u) m( o* P
3.4 Curved boundaries 71
9 h, Y: B$ J. [) g n3.5 Application to general parabolic problems 806 q9 v, X' @; z3 }4 g
Bibliographic notes 83" X4 y ^) m0 U2 q0 b
Exercises 83
3 a m4 F* {9 H' C) k/ |. f3 H9 m4 Hyperbolic equations in one space dimension 86# h' x0 u$ f: S
4.1 Characteristics 86
0 z' `$ `7 x; M. ] m8 ?4.2 The CFL condition 89( Y9 y* F" F) z# ?
4.3 Error analysis of the upwind scheme 94
8 B& h M& m9 g0 Y0 T4 _0 E4.4 Fourier analysis of the upwind scheme 976 l5 L3 l: _; R8 ~ |. V0 J7 @2 L
4.5 The Lax–Wendroff scheme 100$ B- |7 J. e. ]) n6 E" V* b
4.6 The Lax–Wendroff method for conservation laws 103
5 K; N; \% S% F( u6 X4.7 Finite volume schemes 110
+ B8 \: L2 w+ \4.8 The box scheme 116
6 @! g2 k7 W, V( N2 y v4.9 The leap-frog scheme 123
7 _' U; B( K- c# `6 W( M. a0 x4.10 Hamiltonian systems and symplectic& T5 Z5 c5 L5 c' t
integration schemes 1284 ?7 L7 a0 ~. B0 L- E
4.11 Comparison of phase and amplitude errors 135
& v, ] i4 W& x" Y9 H+ O5 q4.12 Boundary conditions and conservation properties 139& }+ B" \* ]* d% ^/ i0 N- c
4.13 Extensions to more space dimensions 143
& |) L1 w, W j8 eBibliographic notes 146; `3 y* q) ~. ^/ Y0 |
Exercises 146' N6 L1 h' W+ \' B& Y0 e6 D9 a
5 Consistency, convergence and stability 151
& P7 v8 z2 C3 ~4 R6 i% x& w5.1 Definition of the problems considered 151
( b }( z# q) ]4 ~" L4 p5.2 The finite difference mesh and norms 1523 q" i7 A: D. [: k4 I. j; N
5.3 Finite difference approximations 154
# l& T' F7 G4 b3 j/ X/ V& R5.4 Consistency, order of accuracy and convergence 156" a {% `, J6 ]& G5 ?
5.5 Stability and the Lax Equivalence Theorem 1570 K- o: W& V m6 }/ V8 ^
5.6 Calculating stability conditions 160, E- Q2 T: n) O( G: M
5.7 Practical (strict or strong) stability 166
3 ]2 H: l% H0 |4 w' c# S) u5.8 Modified equation analysis 169: Y! X1 B4 U# ?8 @7 w, N; ~
5.9 Conservation laws and the energy method of analysis 177& q& n7 U) W, Y
5.10 Summary of the theory 186
5 u' {# B# ] [Bibliographic notes 189
3 Z% ?) E5 H0 m7 ] R: kExercises 190: N6 H: [* u0 i c1 y0 M |4 M4 R
Contents vii
0 ^" d6 P2 z0 ]- Z6 Linear second order elliptic equations in
u8 S8 p; w( Ztwo dimensions 194
/ p0 e' H0 T9 ?5 _9 I R5 Y6 C6.1 A model problem 1947 a. c" @3 m* ~8 f. c+ n- w
6.2 Error analysis of the model problem 195. W/ k1 x- w x+ A/ T
6.3 The general diffusion equation 197& w4 h1 s0 X; n0 ]6 z
6.4 Boundary conditions on a curved boundary 199
% B% H0 i$ Q/ C `6.5 Error analysis using a maximum principle 203
/ U6 B) @( Y, Q. q( t" ^6.6 Asymptotic error estimates 213
7 I6 E$ D! a4 {" O/ k/ f# s6 m4 F L& {6.7 Variational formulation and the finite
" {# p' a7 t0 N3 Oelement method 218+ l% ~8 q8 L- f$ e. [0 X. j0 o
6.8 Convection–diffusion problems 224
1 g/ V2 {5 Q1 r% Z, ^4 ~% X* N6.9 An example 228
. M7 z) O# p5 TBibliographic notes 231
; L+ g% f r3 {9 EExercises 232- G! O" j7 S; s! S1 d
7 Iterative solution of linear algebraic equations 2351 F6 H# K+ n8 b" ?0 {4 P; H
7.1 Basic iterative schemes in explicit form 2373 l* S1 Y' w, `* k) G
7.2 Matrix form of iteration methods and
0 L$ B* z; c6 U0 V9 i$ m- ftheir convergence 239
1 D1 {" g3 O+ N$ I y! h W5 q3 [7.3 Fourier analysis of convergence 244
8 K" F1 ^1 K8 ]2 P7 t/ [) m7.4 Application to an example 248
R( a- X0 u* y9 i& m7.5 Extensions and related iterative methods 250- R1 j/ d$ S0 K+ Y+ k- y
7.6 The multigrid method 252% k/ @; r2 d9 J% P# ~. v% g
7.7 The conjugate gradient method 258" C( a, w: V5 D b3 E. |4 V/ }2 ?
7.8 A numerical example: comparisons 261# p( {. M: u' X2 t- F, V" m
Bibliographic notes 263! C' G( ^6 G# G% ]) m
Exercises 263
f1 N; n5 L# c4 W: IReferences 267
- M; X$ I- w! B+ q. a( P |Index 273
" U* V: { p/ h7 |4 h2 x _6 h
6 \) x# y* ?3 M% [+ U( W, M
6 j7 Q& L4 j) x' R# S8 Y+ A8 q6 M+ j
3 x0 a8 Q! O$ }7 p3 i" ]' r1 s \( f4 X; O/ o
|