|
原版英文书 第二版# ^& j, z0 P; ^0 J/ E* Z
contents:4 g( \# D4 o) ?" {; ?6 l
Preface to the first edition page viii
$ o; U K8 l' s& uPreface to the second edition xi
; Y. L. Y- i5 S5 o g3 N( }' B) S1 Introduction 1
7 v) e' d( d1 x* x) L2 Parabolic equations in one space variable 7
+ B0 Y, f" f3 C* y2.1 Introduction 7, l' N8 m4 s4 \' _. N7 ?
2.2 A model problem 7
7 s* R: C3 R# ~8 r2 S: Y2.3 Series approximation 9! q- S K# r# Q8 `
2.4 An explicit scheme for the model problem 10* p5 K) I, N0 W6 X* e/ v, k% @
2.5 Difference notation and truncation error 12
) ~3 A8 Q$ C- z' o0 u& @' X- R2.6 Convergence of the explicit scheme 16
( `) N& _5 ^. e9 [" }% ] T2.7 Fourier analysis of the error 19
! j/ V! f) S; F* `5 I1 r2.8 An implicit method 22/ @+ m$ I# T8 P- P8 p% o6 Q9 D* c
2.9 The Thomas algorithm 24! N" l3 l6 P, s3 `* z/ k0 B
2.10 The weighted average or θ-method 26
0 B" G# @) x$ L+ K8 {, W! T2.11 A maximum principle and convergence% ~: S* R9 [! Z$ t3 O
for μ(1−θ)≤ 1
) _$ d: y- `' N+ A4 S. v2 33
+ u: c# d5 d) y! z3 T. _9 `5 [2.12 A three-time-level scheme 38
/ M+ A; O9 V: N5 b0 B3 [2.13 More general boundary conditions 39
- c( T( g" `( V* F" n2.14 Heat conservation properties 444 |# o' q7 R0 i' `( t; ^ m
2.15 More general linear problems 465 x: v1 L1 r k
2.16 Polar co-ordinates 52
( p- f- `2 }; o" a& g2.17 Nonlinear problems 54" V' ?% f: V) \6 k
Bibliographic notes 56! d& W3 V3 L& {, T
Exercises 561 e1 ?" {# c, |1 C" Q
v
/ H0 Y$ `- ~1 ^ q; m. Mvi Contents
7 @8 ?- l; j7 z' G! z3 2-D and 3-D parabolic equations 62- u; V; p8 W7 n- q, E; U' J' B
3.1 The explicit method in a rectilinear box 62
7 }) q' `+ i8 v x) Q1 p7 Q9 d6 D4 k3.2 An ADI method in two dimensions 64' P0 |; f+ Z. L5 a! o* i
3.3 ADI and LOD methods in three dimensions 70
5 g. D V) e7 ?! g+ A3 ]% `# ^+ [( j- h3.4 Curved boundaries 71
4 |0 S6 I5 I5 t$ L2 N3.5 Application to general parabolic problems 80
8 d4 Z1 a3 C& [Bibliographic notes 83
. @4 c0 ~ d- q. k, ~4 w2 S" M* l3 sExercises 83
( I# V' D7 |& w4 Hyperbolic equations in one space dimension 86
~6 K& \# ?7 [/ C9 E s4.1 Characteristics 86( e% F, M: |: @3 B
4.2 The CFL condition 89
7 a% [* u4 | b/ l4.3 Error analysis of the upwind scheme 94* g5 e4 T+ d- Q" ^+ ]2 C
4.4 Fourier analysis of the upwind scheme 97
4 h+ J \( G( h. s' z4.5 The Lax–Wendroff scheme 100
* Z9 ~$ Y/ s9 x' ^, ?$ J4.6 The Lax–Wendroff method for conservation laws 1035 [$ R8 f9 K5 P) A$ W
4.7 Finite volume schemes 110
/ {) Y2 K ~+ c4.8 The box scheme 116' T3 |3 l. p% p+ x% B+ P
4.9 The leap-frog scheme 123& c6 o7 W1 c4 V* ^9 x4 o8 u
4.10 Hamiltonian systems and symplectic1 V0 _5 I! Y' L; r; h
integration schemes 128: B0 y: H) O% H4 M$ r1 D
4.11 Comparison of phase and amplitude errors 135 b0 ?2 W8 m1 E, g
4.12 Boundary conditions and conservation properties 139
+ k! ?$ D7 A1 k2 t) Y4.13 Extensions to more space dimensions 143- B% P8 c* N/ ]- {& M
Bibliographic notes 146# t$ ?) Q: x' q5 q# F! X1 t
Exercises 146
T! u( E& s _& f S5 Consistency, convergence and stability 151
. `& u( i# i. N( N( f3 q6 {5.1 Definition of the problems considered 151
. A3 }& f; F) R( B0 ~' t5.2 The finite difference mesh and norms 152
0 A2 n0 A n7 X+ b7 o7 ^5.3 Finite difference approximations 154
* z, n# Q: x5 v, F: r3 N8 |* i& m5.4 Consistency, order of accuracy and convergence 1566 U7 e& Y% l. w( [, A% b- R
5.5 Stability and the Lax Equivalence Theorem 157
2 c$ z4 ^8 s6 E5.6 Calculating stability conditions 160 C d$ i# g9 Y5 C$ I; m
5.7 Practical (strict or strong) stability 166/ y. A0 W" M$ X( K7 B' k
5.8 Modified equation analysis 169
" p+ n& |. w L( ` ^5.9 Conservation laws and the energy method of analysis 1772 F: n8 j& W1 E8 R5 ] K: Z
5.10 Summary of the theory 186
8 E3 x O9 k1 l0 `% DBibliographic notes 189
2 L7 r3 R7 W! N/ G2 w+ o, G, N BExercises 1908 }6 Q: V% Y" A
Contents vii* K; J) A+ Q; o; s2 I
6 Linear second order elliptic equations in
/ j" q5 X& X0 q; Z) q9 dtwo dimensions 194& ]+ T- L( v W) `: r; s' x8 ]
6.1 A model problem 194; e- T- U' {- A! E; X4 H- Z/ ^/ Y2 V
6.2 Error analysis of the model problem 195
$ D% q; T" a% M6.3 The general diffusion equation 197
. G! L3 Y5 l& P" r3 b( a6.4 Boundary conditions on a curved boundary 199
! y* D; `5 z/ E6.5 Error analysis using a maximum principle 203) _) c& V; ~; @% g8 b8 V
6.6 Asymptotic error estimates 213& a; U2 g! |" ?- x3 [# B; p
6.7 Variational formulation and the finite
3 u3 v0 B0 S$ X) j K6 P; m helement method 2188 I" m% r* L) ~% e6 j" }
6.8 Convection–diffusion problems 224; g8 z+ O7 u* S: k
6.9 An example 228/ r F% t& W% m
Bibliographic notes 231
" `. l. a+ \7 p) eExercises 232! D8 w) h' ~1 U
7 Iterative solution of linear algebraic equations 235
3 W1 w# s$ F( [ u0 o& e& u7.1 Basic iterative schemes in explicit form 237
, k- s8 i% a( R9 [) Z7.2 Matrix form of iteration methods and" g7 v M; O% Y) d3 Y1 l- ]2 R
their convergence 239
" r' x# o& e( B/ J! e l7.3 Fourier analysis of convergence 244
3 Z7 w' ^+ z# ~7.4 Application to an example 248, Z9 E1 z- s/ ~. E, i
7.5 Extensions and related iterative methods 250; U4 J1 v, f! {* O6 [, F+ X) q+ l
7.6 The multigrid method 252( o' s! Y. X6 b! g0 U) I! s9 Y
7.7 The conjugate gradient method 258
9 U( v! u5 e4 i! w7.8 A numerical example: comparisons 261
" q% R! D1 `+ ^( dBibliographic notes 2635 W4 k9 K0 r5 V3 _
Exercises 263& `. L+ \+ t3 L9 ]( F) g
References 267
+ P# n- y" r" w/ @Index 273 , I8 ]" o- D2 S3 S* s9 t
' [5 d" Q! D8 l; U) Y
) Y6 _- O# @ T! V7 S' F: a2 R4 i
! q; k4 h t) @' L- `. o- F
8 z% }/ F/ x% i8 _ Z2 R* \ |