- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit7 T' g7 Y- @2 ?7 X# ~; A9 l# h
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4
5 Q0 s' N! S+ ^% k6->k6 k7->k7
( a( u6 z7 O7 ^7 X% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);. e% B, K; X( i$ q# Y$ h
% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
+ ~5 u) P$ c5 ]4 J% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
' {% a! D0 \5 z$ x& E7 q% dLadt = k(7)*C(Hmf);
8 |$ @* H( P+ f; r3 s5 M* K- i%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
V O+ A; d0 K0 Uclear all/ z- c1 S* S3 m6 W& [. k
clc
9 w; z6 S* `, c; w- @format long6 r W% Q" Q# G" R9 x( g% U
% t/min Glc Fru Fa La HMF/ mol/L : \! Y4 O% c+ B9 O8 i
Kinetics=[0 0.25 0 0 0 0
$ ?; G; S7 o- [+ ]$ [ 15 0.2319 0.01257 0.0048 0 2.50E-047 x$ n1 S7 ^& T. x
30 0.19345 0.027 0.00868 0 7.00E-04; ?$ x0 V0 r: j2 Q) d
45 0.15105 0.06975 0.02473 0 0.0033, R I! G6 Q* h; K6 h+ _; c8 p
60 0.13763 0.07397 0.02615 0 0.00428
. ?, J, g' {! }4 _7 _+ _3 A7 y 90 0.08115 0.07877 0.07485 0 0.01405
& {/ m/ [2 a1 I0 h 120 0.0656 0.07397 0.07885 0.00573 0.02143- }' X6 t9 Y2 ?$ z. L
180 0.04488 0.0682 0.07135 0.0091 0.036231 U6 q" Y" \6 I+ T. d; v
240 0.03653 0.06488 0.08945 0.01828 0.05452$ p7 {, @! a5 E
300 0.02738 0.05448 0.09098 0.0227 0.0597
+ }! E2 v! h! J7 u0 [, \" ? 360 0.01855 0.04125 0.09363 0.0239 0.06495];0 s6 e, L9 i$ E! J# z8 U
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值 E, @3 T# }- j$ C2 Z) ^' g
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
: A. I) `3 x: G. F6 X7 D+ Aub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限2 I) m$ c+ f. E& g" c' c
x0 = [0.25 0 0 0 0];8 o- r9 C) U3 z/ ?3 q
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
' E7 B' d+ u6 }# s( `' ?0 H$ S i% warning off
. ]2 v- Z- g! x1 o" ~% 使用函数 ()进行参数估计& v& U, S1 B1 Q% S6 Y+ D! h) c* y
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);, X' T5 ~' V9 V: R4 o& C: c
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')
) ]; \2 {& N$ O7 @2 ?fprintf('\tk1 = %.11f\n',k(1))
& r3 h6 z, W6 t% u/ ~( i2 Qfprintf('\tk2 = %.11f\n',k(2))
5 A. R) n2 N- H& V( j1 Bfprintf('\tk3 = %.11f\n',k(3))
) k# N7 S+ t& p3 z" @! M; Jfprintf('\tk4 = %.11f\n',k(4))
2 m# i( S f* B# A/ n/ Ufprintf('\tk5 = %.11f\n',k(5)); r5 W; o$ A2 @3 D# i
fprintf('\tk6 = %.11f\n',k(6))
' E/ w2 e4 F; s: Nfprintf('\tk7 = %.11f\n',k(7)): f2 G/ f% X0 ^/ U* P2 f
fprintf('\tk8 = %.11f\n',k(8))
& F5 Z0 G3 p+ H/ | @. u" V3 Wfprintf('\tk9 = %.11f\n',k(9))
! ^0 c& h, z: lfprintf('\tk10 = %.11f\n',k(10))
" Q( ^8 W j5 i: Cfprintf(' The sum of the squares is: %.1e\n\n',fval)
# t& ?# ?- L% G& s" e; H9 L" vk_fm= k;
2 r* m2 l# F: z4 I! d; N( I4 R% warning off
1 A; x" ?3 f3 \4 H. f* }% 使用函数lsqnonlin()进行参数估计
8 X4 p/ m. X0 u6 \# n& Z0 R5 q1 v[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
6 P" `6 v( ?2 z. d1 T5 O* j lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); . A3 x: n7 g, k% N& F- Q5 ^
ci = nlparci(k,residual,jacobian);
; s- m5 y2 t, D3 Gfprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n'). E5 \: k0 P! ^% o+ D
fprintf('\tk1 = %.11f\n',k(1))" |: p: E; n J- \% O$ \5 s- }/ ^0 [& Y8 Q
fprintf('\tk2 = %.11f\n',k(2)), N/ D4 h. _% H
fprintf('\tk3 = %.11f\n',k(3))# [/ z8 \! ~( Y6 Z, [7 b, F
fprintf('\tk4 = %.11f\n',k(4))
! Q! @8 D( L$ a* Pfprintf('\tk5 = %.11f\n',k(5))+ e; Z4 y3 _4 J* {
fprintf('\tk6 = %.11f\n',k(6))6 B3 w4 E' j" {" _# G' E R
fprintf('\tk7 = %.11f\n',k(7))# Z2 z, i/ c- } O9 h D" C
fprintf('\tk8 = %.11f\n',k(8))9 h/ \5 U8 I: c- w9 s, i4 w
fprintf('\tk9 = %.11f\n',k(9))% M5 h5 ~9 I- `4 i4 |+ D
fprintf('\tk10 = %.11f\n',k(10))1 y- ^6 [- S2 y# Z$ i L% k
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)! X3 l) W) e( ~
k_ls = k;
5 ]# R e9 L/ V2 Y$ c* L4 g( W6 noutput
3 Y( o% s! O3 H/ Y! Twarning off! h/ v1 k( D/ Q9 n2 Y9 i+ |( [
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计* \* E B0 P: x, x
k0 = k_fm;% B7 A" N) o( X9 {' t p
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...: ]+ b! k& [6 L7 l$ b, T: p/ [
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); & ?# w0 C7 J2 [
ci = nlparci(k,residual,jacobian);
a& T @( ]( }8 A9 o1 Gfprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')
+ n" j+ v: a( V+ L3 nfprintf('\tk1 = %.11f\n',k(1))
& ]% e) s! j$ j$ _. o! p: D3 {/ {fprintf('\tk2 = %.11f\n',k(2))
8 c. |* \0 ~% xfprintf('\tk3 = %.11f\n',k(3))2 Z; r, v7 U. n& R
fprintf('\tk4 = %.11f\n',k(4))7 p8 t8 h! l, o. S% \* t
fprintf('\tk5 = %.11f\n',k(5))8 u4 s; w* ~: D) D0 i) J
fprintf('\tk6 = %.11f\n',k(6))
# b" P! N( }9 ]# Q0 `fprintf('\tk7 = %.11f\n',k(7))9 t1 z8 i- m6 V! x; o7 p+ I# L% N' Z
fprintf('\tk8 = %.11f\n',k(8))8 K# S/ _3 Y' X
fprintf('\tk9 = %.11f\n',k(9))
8 y6 C+ T% C- h) h' \fprintf('\tk10 = %.11f\n',k(10))- i3 G$ q" S7 X6 ?/ J* z1 @0 D+ ~
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
5 X$ h. h6 o' p- t" R6 t$ i/ G' ek_fmls = k;
[4 K3 _( [2 @output" F$ y# g* J" U* A' ]$ V
tspan = [0 15 30 45 60 90 120 180 240 300 360];
" F/ o2 u% t% R[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls); ) q) D' z$ n4 T& m
figure;
6 l3 w7 e" ]( d+ ?8 `4 I a+ k; ~plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')
2 @7 _0 V D) L8 Ifigure;plot(t,x(:,2:5));& [8 ^0 o% m% e# _+ b
p=x(:,1:5)
( g4 g2 A b0 l3 d. e- Vhold on# C. E7 v/ ~ K; z
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
2 d. p4 V8 O, A2 ~
6 b! y J5 C [1 Q' a2 j- Q' r2 I$ r
# r: V1 I: O/ R; ifunction f = ObjFunc7LNL(k,x0,yexp)0 m+ Q" ~7 R1 q( t! h& K
tspan = [0 15 30 45 60 90 120 180 240 300 360];
5 V; V2 }7 M8 o8 Z% x[t, x] = ode45(@KineticEqs,tspan,x0,[],k); % I! ~$ K0 Q0 V: e: x. `9 J
y(:,2) = x(:,1);1 R C5 N6 E" m7 j9 f+ X
y(:,3:6) = x(:,2:5);1 r! r$ G0 ]- V
f1 = y(:,2) - yexp(:,2);
, Q o. D6 X- u' I+ Vf2 = y(:,3) - yexp(:,3);- j' k6 w: Z) t! M" y
f3 = y(:,4) - yexp(:,4);
/ d& W) k6 x; U {2 _& D/ qf4 = y(:,5) - yexp(:,5);* I7 | v6 ]. R: |: w3 A: B
f5 = y(:,6) - yexp(:,6);
9 d1 r$ B! z6 j4 T1 ?' \ Zf = [f1; f2; f3; f4; f5];# C4 Z" a; ?6 P Y
- q$ b7 M' y8 g
; o p9 _2 O0 K z
9 ]$ M* s# l$ `7 C5 k0 u0 n( h5 H/ y
function f = ObjFunc7Fmincon(k,x0,yexp)
6 S5 W' Z; l5 N) P9 `6 Etspan = [0 15 30 45 60 90 120 180 240 300 360];
4 Z* z+ M9 u% {/ J) A[t x] = ode45(@KineticEqs,tspan,x0,[],k);
: m; v9 d7 t1 N1 z+ ~# hy(:,2) = x(:,1);
3 N1 ~6 b8 h' s6 s5 H [y(:,3:6) = x(:,2:5);
8 ?" V4 t( M. g S2 V# d& l% vf = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...# U# S' X2 U: v7 X; t$ W
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...$ {8 a% `9 n& E% l) c
+ sum((y(:,6)-yexp(:,6)).^2) ;
7 X+ [5 t1 D& l, F- Y5 J, u" |2 T' |( L- |" v
+ h5 E# H' x1 y) x
; d+ U# J2 N& V2 M
. ?2 I1 S. j; ?$ F. h! @1 Z( v4 S& pfunction dxdt = KineticEqs(t,x,k)& M# I/ d0 u) W. R
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);6 H% G$ x' ^& d6 |
dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);! J- E4 t4 a" c0 E0 K; M
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);: h% V' q$ \: O3 @- \. d
dLadt = k(7)*x(5);/ Q) W+ y: `3 @2 K( L5 z
dHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
! I6 k% _6 {" r9 t, ndxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];; X+ w* m9 ?+ |5 I# L* f+ p
$ p* v) Z8 k& o, ~! U
5 e3 H3 H. a# } |
-
-
Glc.zip
2.33 KB, 下载次数: 0, 下载积分: 体力 -2 点
M文件以及数据
zan
|