- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit- J" w- S1 b( W3 N
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4
) K3 a5 ?7 h" V. Q* z7 ?/ _% k6->k6 k7->k7
6 w% @3 P. z7 D @3 h# T; w% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
6 Y0 R; H# d! A+ ]. B2 r/ [% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
/ |5 G' C- q' C7 ^' b, F4 T3 R% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf); ?, l7 r8 B6 ~& T: z, M: ^
% dLadt = k(7)*C(Hmf);4 e' x; i. t/ o
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
0 _, |& b* k+ G _8 X7 `5 Vclear all
+ B0 f4 E- Q8 I& Y( Aclc
S9 B1 V1 b1 }' Pformat long
/ u% I' O- Q& T9 n% t/min Glc Fru Fa La HMF/ mol/L
1 i6 s% g& Z: ~. {2 B! x6 [; l. } Kinetics=[0 0.25 0 0 0 0/ @2 k6 Q& |" i" h2 D3 {' w
15 0.2319 0.01257 0.0048 0 2.50E-04
. w, c- P1 U5 q9 H6 V& y 30 0.19345 0.027 0.00868 0 7.00E-042 t9 f8 Q# `( Y/ p) r; i0 }
45 0.15105 0.06975 0.02473 0 0.0033% E2 w# U( n; p+ u% {
60 0.13763 0.07397 0.02615 0 0.00428) @% H, f" y5 B1 v+ ` E, g: x
90 0.08115 0.07877 0.07485 0 0.01405
) v- I) o+ Z6 h 120 0.0656 0.07397 0.07885 0.00573 0.02143
. ^7 s- M! i6 M0 {6 ? 180 0.04488 0.0682 0.07135 0.0091 0.03623$ n: l- g( F# Q* O5 K1 o" A4 k
240 0.03653 0.06488 0.08945 0.01828 0.05452
4 F4 ^, g/ @/ C* S9 ^' o 300 0.02738 0.05448 0.09098 0.0227 0.0597
( j; b w7 g1 K! Q& P 360 0.01855 0.04125 0.09363 0.0239 0.06495];9 E3 _. P* h$ s. R* ]4 K: v# K
k0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值; Q' l# c( Y/ Y3 Y$ D/ c' `9 J
lb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限
- W4 P2 M) u7 sub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限" k" T$ O# B* y6 o/ D7 e
x0 = [0.25 0 0 0 0];; z- b0 r w: O; ?3 H0 ]! X w; I
yexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]* Z" B: T# P! l) l
% warning off: d- J6 h, C/ b) `
% 使用函数 ()进行参数估计 `* B: T; i& V; ]
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);2 l/ d4 C0 d* \" v- G2 {+ { Q% W! b
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')
2 `9 Y2 f' g" V/ d7 J4 ofprintf('\tk1 = %.11f\n',k(1))/ T. ]$ d+ D5 {# ]/ K
fprintf('\tk2 = %.11f\n',k(2))
0 H3 ~' }% M7 H- P9 yfprintf('\tk3 = %.11f\n',k(3))
# s- B: _) }5 q2 \fprintf('\tk4 = %.11f\n',k(4)), J/ G0 U) o) \$ C5 H0 g
fprintf('\tk5 = %.11f\n',k(5)), y9 ^* `5 j& |6 N5 g
fprintf('\tk6 = %.11f\n',k(6))5 [! c6 V/ w- G
fprintf('\tk7 = %.11f\n',k(7))
( w; ?' @9 @4 i9 Q) |fprintf('\tk8 = %.11f\n',k(8))
% A( `- n) Y9 K" G: I0 vfprintf('\tk9 = %.11f\n',k(9))
. V( I8 ]. A. e' J- Q) ]7 N2 W4 P* yfprintf('\tk10 = %.11f\n',k(10))/ `" I/ b/ x* g
fprintf(' The sum of the squares is: %.1e\n\n',fval) Q! [" `( u0 `4 y( n4 O
k_fm= k;. `1 O6 e5 ? b4 }
% warning off. j" @7 r+ D* L1 _
% 使用函数lsqnonlin()进行参数估计
4 b: p- t8 G s5 h7 _. K# _6 i[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...6 }7 K5 i. x" w8 ]/ s
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
: v5 ^! k* @; g( G6 Zci = nlparci(k,residual,jacobian);4 n& D) c6 h1 M8 E3 R
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
G# ]3 Q& Y c$ {fprintf('\tk1 = %.11f\n',k(1))
* P" W9 F( ?6 Lfprintf('\tk2 = %.11f\n',k(2))7 [3 c: o3 m6 g! O6 r3 i
fprintf('\tk3 = %.11f\n',k(3))
0 M4 c( x3 r& ^fprintf('\tk4 = %.11f\n',k(4)); X) Y2 c' A+ J4 [5 e5 L
fprintf('\tk5 = %.11f\n',k(5))
5 G) Y& Y: Y/ B; Gfprintf('\tk6 = %.11f\n',k(6))
- S9 ^- ]1 o+ y- j) ]3 `$ P5 m9 }* pfprintf('\tk7 = %.11f\n',k(7))
( J1 \8 W5 ~) d! i L) _fprintf('\tk8 = %.11f\n',k(8)). x+ p7 t3 s4 G
fprintf('\tk9 = %.11f\n',k(9))& ^$ i) W) v5 a1 R4 l0 d
fprintf('\tk10 = %.11f\n',k(10))* Q: f1 a0 a8 A- l' `& D1 N1 ?
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
- O9 Q/ y4 Y) d0 V: ik_ls = k;) d. p- Q3 i3 u9 m! }1 C1 c+ h
output
8 I @9 u9 e& X4 L, c: Fwarning off% r7 t+ Q( q3 C+ A9 P9 h; |
% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计+ d% w- R1 u; [, U, X7 e, J
k0 = k_fm;
1 i4 ^* [' |6 a0 v[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...+ u# l2 F: C$ f* t" F6 A
lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
! Y O; T+ m0 J }9 fci = nlparci(k,residual,jacobian);
3 T; d$ ]! m5 f4 lfprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n'): D+ z' e7 r, D2 A( ~
fprintf('\tk1 = %.11f\n',k(1))- I+ v, x5 J. j; D6 N% A" s% s
fprintf('\tk2 = %.11f\n',k(2))
) k+ } `9 i6 I# H- T$ lfprintf('\tk3 = %.11f\n',k(3)). x! K, s/ E. q+ t0 h
fprintf('\tk4 = %.11f\n',k(4))( N9 F; K" I4 s6 Y! x
fprintf('\tk5 = %.11f\n',k(5))
. V) [9 ?6 u; q1 K8 m3 X1 rfprintf('\tk6 = %.11f\n',k(6))
& T- x) d& l9 Y: mfprintf('\tk7 = %.11f\n',k(7))3 t4 g( y- I/ k8 ^
fprintf('\tk8 = %.11f\n',k(8))
: R8 z- @$ Z# b; U" g( _4 u, bfprintf('\tk9 = %.11f\n',k(9))& d1 q; b5 u2 @! N$ D6 \( K5 z0 N
fprintf('\tk10 = %.11f\n',k(10))
4 A i" ?! ~4 s% N7 Xfprintf(' The sum of the squares is: %.1e\n\n',resnorm)
* f% g) ^; Z! |k_fmls = k;8 x% f; i, }& D
output
( y' ]) B. Z8 X1 h$ g Qtspan = [0 15 30 45 60 90 120 180 240 300 360];5 }8 i) u0 i- S0 e0 E) b6 J1 V, n
[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls); 0 x9 H$ B: X9 b
figure;
0 d) y/ L y+ ^$ W4 |plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real'): y _& w/ `3 x% ]5 N
figure;plot(t,x(:,2:5));
& q# j: [% Q1 _2 w9 D" Dp=x(:,1:5)& M( B$ `, h2 g$ }
hold on, x1 D1 b1 N5 K X6 N, F6 T; J% }
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')
( P/ ]6 {! C; g7 F5 Y3 Q8 {2 q& [7 _/ k9 n7 ]' I; T! R
5 {* l. o( w+ y) Y4 h; f- {! B
" r& q/ h1 h4 wfunction f = ObjFunc7LNL(k,x0,yexp)
% J2 n2 _* _( o* }% d& \tspan = [0 15 30 45 60 90 120 180 240 300 360];" K" R P# P. q3 Q+ |# B! P
[t, x] = ode45(@KineticEqs,tspan,x0,[],k); + R% f: p: ]: H
y(:,2) = x(:,1);1 X6 c% Y1 H0 ^& S$ q& ?
y(:,3:6) = x(:,2:5);
3 ?8 b% r% N2 z$ f5 ~f1 = y(:,2) - yexp(:,2);
) k; f! i5 I) mf2 = y(:,3) - yexp(:,3);$ X0 s, J. n9 l) {2 o
f3 = y(:,4) - yexp(:,4);
5 q; [' s# \; N6 r* K! s1 Nf4 = y(:,5) - yexp(:,5);
. a* [: e8 E9 c5 P; X" n! V$ m8 w! zf5 = y(:,6) - yexp(:,6);( N1 B* p1 J4 P5 O8 G' |
f = [f1; f2; f3; f4; f5];
/ j* ~! o' J. K6 @/ I# r% [
! L. ]% n. [/ n: B, Z4 M3 k" k- r; ?( [/ y& W6 m; g
3 j9 V) C& {; F! Ofunction f = ObjFunc7Fmincon(k,x0,yexp)
7 R" T' X; i, C3 z1 w2 p3 r& [tspan = [0 15 30 45 60 90 120 180 240 300 360];
, F$ J. \: u8 A+ N+ l1 ~' S[t x] = ode45(@KineticEqs,tspan,x0,[],k);
& K. Q: l0 E2 P6 v6 @% `y(:,2) = x(:,1);
, U9 \; A: X; E' f. Y ?8 vy(:,3:6) = x(:,2:5);& v/ J+ Q9 e! Q9 j* i v' ]7 @
f = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...
' J6 q" k1 I. i7 r+ E + sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) .../ L" P$ X1 ] `! j% t6 Y' s& p
+ sum((y(:,6)-yexp(:,6)).^2) ;
; F5 p# o: N5 i1 f0 r8 e, I
$ Y6 Q7 ~/ h2 o0 O7 s. [8 o1 s9 v. d7 u9 V4 ^; L/ _
/ E. L3 {8 ~- r: H0 }" U) A2 Q/ N! {0 p5 d# E
function dxdt = KineticEqs(t,x,k)7 R' s' }% M% d0 w' S6 m1 E
dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
% d3 x) }7 L% @dFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);
! e6 q& U& q8 B# C; {2 HdFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);, I, `' B) w+ d. v
dLadt = k(7)*x(5);
' d7 t$ F W C; Y! ^( _3 T bdHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);
. O, C* \8 J5 W) F1 wdxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];
) v+ b3 P1 Q, P; M! M t2 r0 ~/ P2 d! T/ ~# G. B
7 i: w. o7 c4 v- R) C |
zan
|