- 在线时间
- 22 小时
- 最后登录
- 2016-10-27
- 注册时间
- 2014-1-1
- 听众数
- 9
- 收听数
- 0
- 能力
- 0 分
- 体力
- 152 点
- 威望
- 0 点
- 阅读权限
- 20
- 积分
- 88
- 相册
- 0
- 日志
- 0
- 记录
- 0
- 帖子
- 88
- 主题
- 5
- 精华
- 0
- 分享
- 0
- 好友
- 9
升级   87.37% TA的每日心情 | 无聊 2015-10-10 18:19 |
---|
签到天数: 24 天 [LV.4]偶尔看看III
 |
10体力
function parafit. t3 `9 _' f9 G4 W6 b# i; X
% k1->k-1,k2->k1,k3->k2,k4->k3,k5->k4& U( u0 Y5 F% e
% k6->k6 k7->k7
( B3 W% k1 Q# N7 F6 k/ G% dGlcdt = k-1*C(Fru)-(k1+k2)*C(Glc);
, h7 H1 d/ `- W* Z3 n8 s0 p% dFrudt = k1*C(Glc)-(k-1+k3+k4)C(Fru);
7 g2 ]3 ]! C4 T% dFadt = k(2)*C(Glc)+k4*C(Fru)+(k6+k7)*C(Hmf);
% j. B5 R5 v9 v2 B% {% dLadt = k(7)*C(Hmf);3 c- x5 E, |# V: }) k R$ s; B
%dHmfdt = k(3)*C(Fru)-(k6+k7)*C(Hmf);
) f8 p3 B. q, L+ c3 ]clear all0 ]+ D3 e( l# G6 ]( o0 n- z
clc$ p. g6 e8 u; Z& K$ _! H: S
format long
9 R! n/ N/ U' \/ T% t/min Glc Fru Fa La HMF/ mol/L
/ Q3 C# N$ \ r! d, W) q2 U Kinetics=[0 0.25 0 0 0 03 H3 I3 g- e- ] B
15 0.2319 0.01257 0.0048 0 2.50E-04% x8 Z8 _& Z3 n9 f1 E
30 0.19345 0.027 0.00868 0 7.00E-04* _0 D7 L% T9 ?- _9 x
45 0.15105 0.06975 0.02473 0 0.0033
1 |$ T( \; @8 ^4 E$ L 60 0.13763 0.07397 0.02615 0 0.00428
: J& r3 V4 j) a$ d 90 0.08115 0.07877 0.07485 0 0.01405
" z& ]' w7 c0 K) l 120 0.0656 0.07397 0.07885 0.00573 0.02143, r4 c% v, e1 o, z `4 M' X
180 0.04488 0.0682 0.07135 0.0091 0.03623" C, C4 g3 n* J, G" |+ W9 L: z( \( r0 G
240 0.03653 0.06488 0.08945 0.01828 0.054524 l! H1 G# J6 @, w7 r q
300 0.02738 0.05448 0.09098 0.0227 0.0597
) `4 D- S$ \+ k1 t) X' c 360 0.01855 0.04125 0.09363 0.0239 0.06495];
8 b: e V: c) l5 Yk0 = [0.0000000005 0.0000000005 0.0000000005 0.00000000005 0.00005 0.0134 0.00564 0.00001 0.00001 0.00001]; % 参数初值
7 G* E1 h; K C1 e- e5 m C+ U0 {3 tlb = [0 0 0 0 0 0 0 0 0 0]; % 参数下限0 l. h5 c" ~# `( P" d
ub = [1 1 1 1 1 1 1 1 1 1]; % 参数上限0 k& s V- M1 T {$ M; E
x0 = [0.25 0 0 0 0];
' H0 Z" R$ I9 E- G9 Oyexp = Kinetics; % yexp: 实验数据[x1 x4 x5 x6]
* x9 g( b* [) `. ^% warning off! U W5 s% M; T( k: j0 \
% 使用函数 ()进行参数估计) e% d3 p+ H! ]5 \
[k,fval,flag] = fmincon(@ObjFunc7Fmincon,k0,[],[],[],[],lb,ub,[],[],x0,yexp);0 h+ Q) X7 b! p
fprintf('\n使用函数fmincon()估计得到的参数值为:\n')
/ d; }8 f' C! k6 [, q, Z% P } ifprintf('\tk1 = %.11f\n',k(1))/ x& x# j9 U ^2 p" u+ Y8 c/ }
fprintf('\tk2 = %.11f\n',k(2)). g G( T: ^8 V4 e
fprintf('\tk3 = %.11f\n',k(3))
5 @6 O' g$ D! B2 dfprintf('\tk4 = %.11f\n',k(4))
* I& Y3 h$ C! nfprintf('\tk5 = %.11f\n',k(5))+ `8 d9 `, @/ J% {3 h- Q
fprintf('\tk6 = %.11f\n',k(6))
: q) q( { B4 T! k/ ffprintf('\tk7 = %.11f\n',k(7))2 v! w# U" ]" M6 Y' m
fprintf('\tk8 = %.11f\n',k(8))! p( F ]/ j) E# E- X! Q0 ^$ ?; x; c
fprintf('\tk9 = %.11f\n',k(9))
0 x" K) ]# z. b$ W! N- yfprintf('\tk10 = %.11f\n',k(10))2 U1 H5 w; k$ b% W5 N' n
fprintf(' The sum of the squares is: %.1e\n\n',fval)# I6 I* [! k# h3 a
k_fm= k;7 V/ T1 ?. a# l1 ?" [
% warning off+ T% _3 X x- K2 }1 N
% 使用函数lsqnonlin()进行参数估计1 A% x% k) O# F! d% L( s! \
[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
1 u1 x7 x: ]" S/ d6 h2 d4 e% D+ ^ lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp);
, {' I8 e8 G. Y' }1 v2 mci = nlparci(k,residual,jacobian);2 T3 U+ S' d' i3 y6 r
fprintf('\n\n使用函数lsqnonlin()估计得到的参数值为:\n')
X, Q% k- c# d- M7 f* ~' U$ xfprintf('\tk1 = %.11f\n',k(1))
! z) f& h! b# jfprintf('\tk2 = %.11f\n',k(2))
( j$ w) i3 a7 `' p$ D. ~fprintf('\tk3 = %.11f\n',k(3))5 [. h K! T# w2 M
fprintf('\tk4 = %.11f\n',k(4))
0 }* I0 e. @ p0 `( w- l$ _fprintf('\tk5 = %.11f\n',k(5))
: y4 J0 O2 M5 y. a, G* r: yfprintf('\tk6 = %.11f\n',k(6)): W* i$ H9 S6 {/ ~$ e& b4 s
fprintf('\tk7 = %.11f\n',k(7))
$ |2 l2 s' F+ d nfprintf('\tk8 = %.11f\n',k(8))0 a0 N" H! ?1 L# N( i) @" h+ w1 r
fprintf('\tk9 = %.11f\n',k(9))3 V7 p7 ^! r) L+ o
fprintf('\tk10 = %.11f\n',k(10))" K* O8 M; S, R, _- o# P
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)( g+ h6 x, f7 A4 `$ L: F
k_ls = k;
: J2 H3 r2 y) R: h! ]output
: z8 m [) Z$ h9 X* P% j9 h: `warning off
g) J- H0 `' q ~: _* M% 以函数fmincon()估计得到的结果为初值,使用函数lsqnonlin()进行参数估计 j3 g4 b* B* d
k0 = k_fm;
; h& W" D7 V# ?[k,resnorm,residual,exitflag,output,lambda,jacobian] = ...
7 h, \' d# r0 d4 H) Q" J lsqnonlin(@ObjFunc7LNL,k0,lb,ub,[],x0,yexp); % m+ o7 x' R" p. ~4 w
ci = nlparci(k,residual,jacobian);
$ ~& k' x) Z& ~, y7 |* Rfprintf('\n\n以fmincon()的结果为初值,使用函数lsqnonlin()估计得到的参数值为:\n')0 t4 F7 }0 @; G, F/ X+ i
fprintf('\tk1 = %.11f\n',k(1))
! I! J# f) H5 V9 Y4 Y' Zfprintf('\tk2 = %.11f\n',k(2))2 I) X: g! @8 l4 ^0 G- p' ~. x
fprintf('\tk3 = %.11f\n',k(3))6 F, ^. e# p6 K- [7 H
fprintf('\tk4 = %.11f\n',k(4))# `9 I3 { e& @/ `
fprintf('\tk5 = %.11f\n',k(5))
% H& Q+ R) Q$ e. m2 B! xfprintf('\tk6 = %.11f\n',k(6))0 x8 ?( D( c, [; G; O
fprintf('\tk7 = %.11f\n',k(7))& P4 [: c, ?& S: {5 b* T" E, n
fprintf('\tk8 = %.11f\n',k(8))$ }' O5 C3 h4 _
fprintf('\tk9 = %.11f\n',k(9))4 b# N% Q+ x! q6 d! `
fprintf('\tk10 = %.11f\n',k(10)); G2 u. j M, B. t2 ?# U
fprintf(' The sum of the squares is: %.1e\n\n',resnorm)
5 ]/ ~* m3 c- Q" p+ J$ Xk_fmls = k;; S$ b+ _7 v- T, u
output
$ J7 O% Y0 S0 o" ~9 Q* Atspan = [0 15 30 45 60 90 120 180 240 300 360];! v z0 h7 ~, _# i, q7 ~6 g. C
[t x] = ode45(@KineticEqs,tspan,x0,[],k_fmls);
4 r) {1 z5 [. w+ W* b- }figure;2 {! B& v- F+ X1 ]# }! w" H& G) S( W
plot(t,x(:,1),t,yexp(:,2),'*');legend('Glc-pr','Glc-real')7 x# O& x# N+ `) s! g7 N( q
figure;plot(t,x(:,2:5));( E' l r& t' L6 x0 k; h
p=x(:,1:5)& G2 v* w; C& t' B9 q& q5 P
hold on/ Q/ d+ S1 c+ ?+ J. ?& b
plot(t,yexp(:,3:6),'o');legend('Fru-pr','Fa-pr','La-pr','HMF-pr','Fru-real','Fa-real','La-real','HMF-real')( z* T& s5 i3 d
9 e' I1 w7 H$ L% ~ _! @0 U/ H3 |, P) D. e) I+ X5 r! m3 w
* q, Q. z* V. U/ I7 I- e* \function f = ObjFunc7LNL(k,x0,yexp)
6 d( ]3 K- t# `7 }3 y: Otspan = [0 15 30 45 60 90 120 180 240 300 360];
$ y& _! |. i3 W# N4 S3 {+ L! f5 I+ I[t, x] = ode45(@KineticEqs,tspan,x0,[],k);
- C# d- r2 X0 D( B! o& U8 b) Z+ ny(:,2) = x(:,1);
) F$ R1 h2 Y- k+ Y- R: V. |y(:,3:6) = x(:,2:5);; M/ t% t6 l5 _$ N5 ?
f1 = y(:,2) - yexp(:,2);. f# [0 o. A I. c; b9 ]. ^: N: i0 ?
f2 = y(:,3) - yexp(:,3);
! L$ T# J. u9 o [- nf3 = y(:,4) - yexp(:,4);
7 K( N. K+ m+ I! {- hf4 = y(:,5) - yexp(:,5);0 N. c: O R2 m1 r3 p
f5 = y(:,6) - yexp(:,6);
! Q* z0 P5 ~9 C9 z) E. T+ K) Kf = [f1; f2; f3; f4; f5];( V% b7 }$ X5 K8 k2 I! Z5 o
: b+ w- A1 z J5 }
4 R* g% d- E# k5 ]( A$ `
/ r7 [) E: H) n$ x# _3 r5 Xfunction f = ObjFunc7Fmincon(k,x0,yexp)
; y! S. a) q6 N* Ttspan = [0 15 30 45 60 90 120 180 240 300 360];! \* f* D/ h8 C$ [* F; A' a
[t x] = ode45(@KineticEqs,tspan,x0,[],k); + ~: v) X4 l/ Z! q) M8 K
y(:,2) = x(:,1);& t; F6 y2 b& t- H0 t/ z+ u
y(:,3:6) = x(:,2:5);" m7 D9 c, H* I5 s
f = sum((y(:,2)-yexp(:,2)).^2) + sum((y(:,3)-yexp(:,3)).^2) ...- ?5 [1 K5 [4 y* z" g/ ?
+ sum((y(:,4)-yexp(:,4)).^2) + sum((y(:,5)-yexp(:,5)).^2) ...: t# } N1 L" ^% m/ I2 g+ {% ~, m7 l
+ sum((y(:,6)-yexp(:,6)).^2) ;2 g h7 D$ Y9 y# Y3 F
1 o0 E% t- E2 C* X, i$ z! v
, @& {3 n0 Q" e" ]
4 l0 o- D# t9 h! |4 k4 T7 b" P
: \0 _/ t! v$ i% b9 i$ ?- D; Pfunction dxdt = KineticEqs(t,x,k)
5 Y3 f1 J+ Q3 u5 P5 r! \dGldt = k(1)*x(2)-(k(2)+k(3)+k(8))*x(1);
! k3 T' b! P. e4 r' g$ {1 u; A" udFrdt = k(2)*x(1)-(k(1)+k(4)+k(5)+k(9))*x(2);% Y; Y! T2 v [8 {6 h9 W, P
dFadt = k(3)*x(1)+k(5)*x(2)+(k(6)+k(7))*x(5);5 @% C0 j: S. J7 m1 P5 G
dLadt = k(7)*x(5);
, m+ k7 K* V# w' zdHmdt = k(4)*x(2)-(k(6)+k(7)+k(10))*x(5);0 i: ~2 i* |6 b* X1 I& g
dxdt = [dGldt; dFrdt; dFadt; dLadt; dHmdt];( H+ D; M, h( J
3 B @ W3 o; u9 w' E( p0 ?9 V) x# \8 ^! G) {' M
|
zan
|